Skip to main content

Turán’s Theorem Through Algorithmic Lens

  • Conference paper
  • First Online:
Graph-Theoretic Concepts in Computer Science (WG 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14093))

Included in the following conference series:

Abstract

The fundamental theorem of Turán from Extremal Graph Theory determines the exact bound on the number of edges \(t_r(n)\) in an n-vertex graph that does not contain a clique of size \(r+1\). We establish an interesting link between Extremal Graph Theory and Algorithms by providing a simple compression algorithm that in linear time reduces the problem of finding a clique of size \(\ell \) in an n-vertex graph G with \(m \ge t_r(n)-k\) edges, where \(\ell \le r+1\), to the problem of finding a maximum clique in a graph on at most 5k vertices. This also gives us an algorithm deciding in time \(2.49^{k}\cdot (n + m)\) whether G has a clique of size \(\ell \). As a byproduct of the new compression algorithm, we give an algorithm that in time \(2^{\mathcal {O}(td^2 )} \cdot n^2\) decides whether a graph contains an independent set of size at least \(n/(d+1) +t\). Here d is the average vertex degree of the graph G. The multivariate complexity analysis based on ETH indicates that the asymptotical dependence on several parameters in the running times of our algorithms is tight.

The research leading to these results has received funding from the Research Council of Norway via the project BWCA (grant no. 314528) and DFG Research Group ADYN via grant DFG 411362735.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    A kernel is by definition a reduction to an instance of the same problem. See the book [14] for an introduction to kernelization.

References

  1. Alon, N., Gutin, G., Kim, E.J., Szeider, S., Yeo, A.: Solving MAX-\(r\)-SAT above a tight lower bound. Algorithmica 61(3), 638–655 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bodlaender, H.L., Fomin, F.V., Lokshtanov, D., Penninkx, E., Saurabh, S., Thilikos, D.M.: (Meta) kernelization. J. ACM 63(5), 44:1–44:69 (2016). https://doi.org/10.1145/2973749

  3. Bodlaender, H.L., Jansen, B.M.P., Kratsch, S.: Kernelization lower bounds by cross-composition. SIAM J. Discret. Math. 28(1), 277–305 (2014). https://doi.org/10.1137/120880240

    Article  MathSciNet  MATH  Google Scholar 

  4. Brooks, L.R.: On colouring the nodes of a network. Proc. Camb. Philos. Soc. 37, 194–197 (1941)

    Article  MathSciNet  MATH  Google Scholar 

  5. Crowston, R., Jones, M., Muciaccia, G., Philip, G., Rai, A., Saurabh, S.: Polynomial kernels for lambda-extendible properties parameterized above the Poljak-Turzik bound. In: IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS). Leibniz International Proceedings in Informatics (LIPIcs), vol. 24, pp. 43–54. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany (2013)

    Google Scholar 

  6. Cygan, M., et al.: Parameterized Algorithms. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-21275-3

  7. Demaine, E.D., Fomin, F.V., Hajiaghayi, M., Thilikos, D.M.: Subexponential parameterized algorithms on graphs of bounded genus and \(H\)-minor-free graphs. J. ACM 52(6), 866–893 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  8. Downey, R.G., Fellows, M.R.: Parameterized Complexity. Springer-Verlag, New York (1999)

    Book  MATH  Google Scholar 

  9. Dvorák, Z., Lidický, B.: Independent sets near the lower bound in bounded degree graphs. In: Proceedings of the 34th International Symposium on Theoretical Aspects of Computer Science (STACS). Leibniz International Proceedings in Informatics (LIPIcs), vol. 66, pp. 28:1–28:13. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2017). https://doi.org/10.4230/LIPIcs.STACS.2017.28

  10. Dvorák, Z., Mnich, M.: Large independent sets in triangle-free planar graphs. SIAM J. Discret. Math. 31(2), 1355–1373 (2017). https://doi.org/10.1137/16M1061862

    Article  MathSciNet  MATH  Google Scholar 

  11. Erdős, P.: On the graph theorem of Turán. Mat. Lapok 21, 249–251 (1970)

    MathSciNet  MATH  Google Scholar 

  12. Fomin, F.V., Golovach, P.A., Lokshtanov, D., Panolan, F., Saurabh, S., Zehavi, M.: Going far from degeneracy. SIAM J. Discret. Math. 34(3), 1587–1601 (2020). https://doi.org/10.1137/19M1290577

    Article  MathSciNet  MATH  Google Scholar 

  13. Fomin, F.V., Golovach, P.A., Sagunov, D., Simonov, K.: Turán’s theorem through algorithmic lens (2023)

    Google Scholar 

  14. Fomin, F.V., Lokshtanov, D., Saurabh, S., Zehavi, M.: Kernelization: Theory of Parameterized Preprocessing. Cambridge University Press, Cambridge (2019)

    Google Scholar 

  15. Garg, S., Philip, G.: Raising the bar for vertex cover: fixed-parameter tractability above a higher guarantee. In: Proceedings of the Twenty-Seventh Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 1152–1166. SIAM (2016). https://doi.org/10.1137/1.9781611974331.ch80

  16. Gutin, G., van Iersel, L., Mnich, M., Yeo, A.: Every ternary permutation constraint satisfaction problem parameterized above average has a kernel with a quadratic number of variables. J. Comput. Syst. Sci. 78(1), 151–163 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  17. Gutin, G., Kim, E.J., Lampis, M., Mitsou, V.: Vertex cover problem parameterized above and below tight bounds. Theory Comput. Syst. 48(2), 402–410 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  18. Gutin, G.Z., Patel, V.: Parameterized traveling salesman problem: beating the average. SIAM J. Discret. Math. 30(1), 220–238 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  19. Gutin, G.Z., Rafiey, A., Szeider, S., Yeo, A.: The linear arrangement problem parameterized above guaranteed value. Theory Comput. Syst. 41(3), 521–538 (2007). https://doi.org/10.1007/s00224-007-1330-6

    Article  MathSciNet  MATH  Google Scholar 

  20. Håstad, J.: Clique is hard to approximate within \(n^{1-\epsilon }\). Acta Math. 182(1), 105–142 (1999). https://doi.org/10.1007/BF02392825

    Article  MathSciNet  MATH  Google Scholar 

  21. Impagliazzo, R., Paturi, R., Zane, F.: Which problems have strongly exponential complexity. J. Comput. Syst. Sci. 63(4), 512–530 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  22. Jansen, B.M.P., Kozma, L., Nederlof, J.: Hamiltonicity below Dirac’s condition. In: Sau, I., Thilikos, D.M. (eds.) WG 2019. LNCS, vol. 11789, pp. 27–39. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-30786-8_3

    Chapter  Google Scholar 

  23. Karp, R.M.: Reducibility among combinatorial problems. In: Complexity of Computer Computations, pp. 85–103. Plenum Press, New York (1972)

    Google Scholar 

  24. Korándi, D., Roberts, A., Scott, A.: Exact stability for turán’s theorem. Adv. Comb. 31079 (2021)

    Google Scholar 

  25. Lokshtanov, D., Narayanaswamy, N.S., Raman, V., Ramanujan, M.S., Saurabh, S.: Faster parameterized algorithms using linear programming. ACM Trans. Algorithms 11(2), 15:1–15:31 (2014). https://doi.org/10.1145/2566616

  26. Mahajan, M., Raman, V.: Parameterizing above guaranteed values: MaxSat and MaxCut. J. Algorithms 31(2), 335–354 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  27. Mahajan, M., Raman, V., Sikdar, S.: Parameterizing above or below guaranteed values. J. Comput. Syst. Sci. 75(2), 137–153 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  28. Pilipczuk, M., Siebertz, S.: Kernelization and approximation of distance-r independent sets on nowhere dense graphs. Eur. J. Comb. 94, 103309 (2021). https://doi.org/10.1016/j.ejc.2021.103309

    Article  MathSciNet  MATH  Google Scholar 

  29. Turán, P.: Eine Extremalaufgabe aus der Graphentheorie. Mat. Fiz. Lapok 48, 436–452 (1941)

    MathSciNet  MATH  Google Scholar 

  30. Xiao, M., Nagamochi, H.: Exact algorithms for maximum independent set. Inf. Comput. 255, 126–146 (2017). https://doi.org/10.1016/j.ic.2017.06.001

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kirill Simonov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Fomin, F.V., Golovach, P.A., Sagunov, D., Simonov, K. (2023). Turán’s Theorem Through Algorithmic Lens. In: Paulusma, D., Ries, B. (eds) Graph-Theoretic Concepts in Computer Science. WG 2023. Lecture Notes in Computer Science, vol 14093. Springer, Cham. https://doi.org/10.1007/978-3-031-43380-1_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-43380-1_25

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-43379-5

  • Online ISBN: 978-3-031-43380-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics