Skip to main content

Nonplanar Graph Drawings with k Vertices per Face

  • Conference paper
  • First Online:
Graph-Theoretic Concepts in Computer Science (WG 2023)

Abstract

The study of nonplanar graph drawings with forbidden or desired crossing configurations has a long tradition in geometric graph theory, and received an increasing attention in the last two decades, under the name of beyond-planar graph drawing. In this context, we introduce a new hierarchy of graph families, called \(k^+\)-real face graphs. For any integer \(k \ge 1\), a graph G is a \(k^+\)-real face graph if it admits a drawing \(\varGamma \) in the plane such that the boundary of each face (formed by vertices, crossings, and edges) contains at least k vertices of G. We give tight upper bounds on the maximum number of edges of \(k^+\)-real face graphs. In particular, we show that \(1^+\)-real face and \(2^+\)-real face graphs with n vertices have at most \(5n-10\) and \(4n-8\) edges, respectively. Also, if all vertices are constrained to be on the boundary of the external face, then \(1^+\)-real face and \(2^+\)-real face graphs have at most \(3n-6\) and \(2.5n-4\) edges, respectively. We also study relationships between \(k^+\)-real face graphs and beyond-planar graph families with hereditary property.

Research started at the Summer Workshop on Graph Drawing (SWGD) 2022, and partially supported by: (i) MIUR, grant 20174LF3T8 “AHeAD: efficient Algorithms for HArnessing networked Data”; (ii) Dipartimento di Ingegneria - Università degli Studi di Perugia, Ricerca di Base, grants RICBA21LG and RICBA22CB.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ackerman, E.: On the maximum number of edges in topological graphs with no four pairwise crossing edges. Discret. Comput. Geom. 41(3), 365–375 (2009). https://doi.org/10.1007/s00454-009-9143-9

    Article  MathSciNet  MATH  Google Scholar 

  2. Ackerman, E.: On topological graphs with at most four crossings per edge. Comput. Geom. 85 (2019). https://doi.org/10.1016/j.comgeo.2019.101574

  3. Ackerman, E., Fulek, R., Tóth, C.D.: On the size of graphs that admit polyline drawings with few bends and crossing angles. In: Brandes, U., Cornelsen, S. (eds.) GD 2010. LNCS, vol. 6502, pp. 1–12. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-18469-7_1

    Chapter  Google Scholar 

  4. Ackerman, E., Tardos, G.: On the maximum number of edges in quasi-planar graphs. J. Comb. Theory Ser. A 114(3), 563–571 (2007). https://doi.org/10.1016/j.jcta.2006.08.002

    Article  MathSciNet  MATH  Google Scholar 

  5. Ali, P., Dankelmann, P., Mukwembi, S.: The radius of \(k\)-connected planar graphs with bounded faces. Discret. Math. 312(24), 3636–3642 (2012). https://doi.org/10.1016/j.disc.2012.08.019

    Article  MathSciNet  MATH  Google Scholar 

  6. Alon, N., Erdős, P.: Disjoint edges in geometric graphs. Discret. Comput. Geom. 4, 287–290 (1989). https://doi.org/10.1007/BF02187731

    Article  MathSciNet  MATH  Google Scholar 

  7. Angelini, P., et al.: Simple k-planar graphs are simple (k+1)-quasiplanar. J. Comb. Theory Ser. B 142, 1–35 (2020). https://doi.org/10.1016/j.jctb.2019.08.006

    Article  MathSciNet  MATH  Google Scholar 

  8. Auer, C., et al.: Outer 1-planar graphs. Algorithmica 74(4), 1293–1320 (2016). https://doi.org/10.1007/s00453-015-0002-1

    Article  MathSciNet  MATH  Google Scholar 

  9. Avital, S., Hanani, H.: Graphs. Gilyonot Lematematika 3, 2–8 (1966)

    Google Scholar 

  10. Bekos, M.A., Cornelsen, S., Grilli, L., Hong, S., Kaufmann, M.: On the recognition of fan-planar and maximal outer-fan-planar graphs. Algorithmica 79(2), 401–427 (2017). https://doi.org/10.1007/s00453-016-0200-5

    Article  MathSciNet  MATH  Google Scholar 

  11. Bekos, M.A., Kaufmann, M., Raftopoulou, C.N.: On optimal 2- and 3-planar graphs. In: SoCG. LIPIcs, vol. 77, pp. 16:1–16:16. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2017). https://doi.org/10.4230/LIPIcs.SoCG.2017.16

  12. Binucci, C., et al.: Algorithms and characterizations for 2-layer fan-planarity: from caterpillar to stegosaurus. J. Graph Algorithms Appl. 21(1), 81–102 (2017). https://doi.org/10.7155/jgaa.00398

    Article  MathSciNet  MATH  Google Scholar 

  13. Binucci, C., et al.: Fan-planarity: properties and complexity. Theor. Comput. Sci. 589, 76–86 (2015). https://doi.org/10.1016/j.tcs.2015.04.020

    Article  MathSciNet  MATH  Google Scholar 

  14. Bodendiek, R., Schumacher, H., Wagner, K.: Über 1-optimale graphen. Math. Nachr. 117, 323–339 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  15. Bollobás, B.: Extremal Graph Theory. Academic Press, New York (1978)

    MATH  Google Scholar 

  16. Bose, P., Kirkpatrick, D.G., Li, Z.: Worst-case-optimal algorithms for guarding planar graphs and polyhedral surfaces. Comput. Geom. 26(3), 209–219 (2003). https://doi.org/10.1016/S0925-7721(03)00027-0

    Article  MathSciNet  MATH  Google Scholar 

  17. Di Battista, G., Eades, P., Tamassia, R., Tollis, I.G.: Graph Drawing: Algorithms for the Visualization of Graphs. Prentice-Hall, Hoboken (1999)

    MATH  Google Scholar 

  18. Di Giacomo, E., Didimo, W., Liotta, G., Meijer, H.: Area, curve complexity, and crossing resolution of non-planar graph drawings. Theory Comput. Syst. 49(3), 565–575 (2011). https://doi.org/10.1007/s00224-010-9275-6

    Article  MathSciNet  MATH  Google Scholar 

  19. Didimo, W.: Density of straight-line 1-planar graph drawings. Inf. Process. Lett. 113(7), 236–240 (2013). https://doi.org/10.1016/j.ipl.2013.01.013

    Article  MathSciNet  MATH  Google Scholar 

  20. Didimo, W.: Right angle crossing drawings of graphs. In: Hong, S.-H., Tokuyama, T. (eds.) Beyond Planar Graphs, pp. 149–169. Springer, Singapore (2020). https://doi.org/10.1007/978-981-15-6533-5_9

    Chapter  MATH  Google Scholar 

  21. Didimo, W., Eades, P., Liotta, G.: Drawing graphs with right angle crossings. Theor. Comput. Sci. 412(39), 5156–5166 (2011). https://doi.org/10.1016/j.tcs.2011.05.025

    Article  MathSciNet  MATH  Google Scholar 

  22. Didimo, W., Liotta, G., Montecchiani, F.: A survey on graph drawing beyond planarity. ACM Comput. Surv. 52(1), 4:1–4:37 (2019). https://doi.org/10.1145/3301281

  23. Du Preez, B.: Plane graphs with large faces and small diameter. Australas. J. Comb. 80(3), 401–418 (2021)

    MathSciNet  MATH  Google Scholar 

  24. Dujmovic, V., Gudmundsson, J., Morin, P., Wolle, T.: Notes on large angle crossing graphs. Chicago J. Theor. Comput. Sci. 2011 (2011)

    Google Scholar 

  25. Hong, S.-H.: Beyond planar graphs: introduction. In: Hong, S.-H., Tokuyama, T. (eds.) Beyond Planar Graphs, pp. 1–9. Springer, Singapore (2020). https://doi.org/10.1007/978-981-15-6533-5_1

    Chapter  MATH  Google Scholar 

  26. Hong, S., Eades, P., Katoh, N., Liotta, G., Schweitzer, P., Suzuki, Y.: A linear-time algorithm for testing outer-1-planarity. Algorithmica 72(4), 1033–1054 (2015). https://doi.org/10.1007/s00453-014-9890-8

    Article  MathSciNet  MATH  Google Scholar 

  27. Hong, S., Kaufmann, M., Kobourov, S.G., Pach, J.: Beyond-planar graphs: algorithmics and combinatorics (Dagstuhl Seminar 16452). Dagstuhl Rep. 6(11), 35–62 (2016). https://doi.org/10.4230/DagRep.6.11.35

    Article  Google Scholar 

  28. Kobourov, S.G., Liotta, G., Montecchiani, F.: An annotated bibliography on 1-planarity. Comput. Sci. Rev. 25, 49–67 (2017). https://doi.org/10.1016/j.cosrev.2017.06.002

    Article  MathSciNet  MATH  Google Scholar 

  29. Kupitz, Y.S.: Extremal problems in combinatorial geometry. Lecture notes series, Matematisk institut, Aarhus universitet (1979)

    Google Scholar 

  30. Lan, Y., Shi, Y., Song, Z.: Extremal \(h\)-free planar graphs. Electron. J. Comb. 26(2), 2 (2019). https://doi.org/10.37236/8255

    Article  MathSciNet  MATH  Google Scholar 

  31. Pach, J.: Geometric graph theory. In: Handbook of Discrete and Computational Geometry, 2nd edn., pp. 219–238. Chapman and Hall/CRC (2004). https://doi.org/10.1201/9781420035315.ch10

  32. Pach, J., Radoicic, R., Tardos, G., Tóth, G.: Improving the crossing lemma by finding more crossings in sparse graphs. Discret. Computat. Geom. 36(4), 527–552 (2006). https://doi.org/10.1007/s00454-006-1264-9

    Article  MathSciNet  MATH  Google Scholar 

  33. Pach, J., Töröcsik, J.: Some geometric applications of Dilworth’s theorem. Discret. Comput. Geom. 12, 1–7 (1994). https://doi.org/10.1007/BF02574361

    Article  MathSciNet  MATH  Google Scholar 

  34. Pach, J., Tóth, G.: Graphs drawn with few crossings per edge. Combinatorica 17(3), 427–439 (1997). https://doi.org/10.1007/BF01215922

    Article  MathSciNet  MATH  Google Scholar 

  35. Suk, A., Walczak, B.: New bounds on the maximum number of edges in \(k\)-quasi-planar graphs. Comput. Geom. 50, 24–33 (2015). https://doi.org/10.1016/j.comgeo.2015.06.001

    Article  MathSciNet  MATH  Google Scholar 

  36. Suzuki, Y.: 1-planar graphs. In: Hong, S.-H., Tokuyama, T. (eds.) Beyond Planar Graphs, pp. 47–68. Springer, Singapore (2020). https://doi.org/10.1007/978-981-15-6533-5_4

    Chapter  MATH  Google Scholar 

Download references

Acknowledgments

We thank Vida Dujmović for valuable discussion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carla Binucci .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Binucci, C. et al. (2023). Nonplanar Graph Drawings with k Vertices per Face. In: Paulusma, D., Ries, B. (eds) Graph-Theoretic Concepts in Computer Science. WG 2023. Lecture Notes in Computer Science, vol 14093. Springer, Cham. https://doi.org/10.1007/978-3-031-43380-1_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-43380-1_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-43379-5

  • Online ISBN: 978-3-031-43380-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics