Skip to main content

Cutting Barnette Graphs Perfectly is Hard

  • Conference paper
  • First Online:
Graph-Theoretic Concepts in Computer Science (WG 2023)

Abstract

perfect matching cut is a perfect matching that is also a cutset, or equivalently a perfect matching containing an even number of edges on every cycle. The corresponding algorithmic problem, Perfect Matching Cut, is known to be NP-complete in subcubic bipartite graphs [Le & Telle, TCS ’22] but its complexity was open in planar graphs and in cubic graphs. We settle both questions at once by showing that Perfect Matching Cut is NP-complete in 3-connected cubic bipartite planar graphs or Barnette graphs. Prior to our work, among problems whose input is solely an undirected graph, only Distance-2 4-Coloring was known NP-complete in Barnette graphs. Notably, Hamiltonian Cycle would only join this private club if Barnette’s conjecture were refuted.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Note however that the induced variant of Maximum Matching is an interesting problem that happens to be NP-complete [36].

  2. 2.

    The authors consider the framework of \((k,\sigma ,\rho )\)-partition problem, where k is a positive integer, and \(\sigma , \rho \) are sets of non-negative integers, and one looks for a vertex-partition into k parts such that each vertex of each part has a number of neighbors in its own part in \(\sigma \), and a number of other neighbors in \(\rho \); hence, PMC is then the \((2,\mathbb {N},\{1\})\)-partition problem.

  3. 3.

    Among problems with edge orientations, vertex or edge weights, or prescribed subsets of vertices or edges, the list is significantly longer, and also includes Minimum Weighted Edge Coloring [7], List Edge Coloring and Precoloring Extension [30], k-In-A-Tree [8], etc.

  4. 4.

    Which precisely states that every polyhedral (that is, 3-connected planar) cubic bipartite graphs admits a hamiltonian cycle.

  5. 5.

    We avoid using the term “edge cut” since, for some authors, an edge cut is, more generally, a subset of edges whose deletion increases the number of connected components.

References

  1. Akiyama, T., Nishizeki, T., Saito, N.: NP-completeness of the Hamiltonian cycle problem for bipartite graphs. J. Inf. Process. 3(2), 73–76 (1980)

    MathSciNet  MATH  Google Scholar 

  2. Bonsma, P.S.: The complexity of the matching-cut problem for planar graphs and other graph classes. J. Graph Theory 62(2), 109–126 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bouquet, V., Picouleau, C.: The complexity of the perfect matching-cut problem. arXiv preprint arXiv:2011.03318 (2020)

  4. Chen, C.-Y., Hsieh, S.-Y., Le, H.-O., Le, V.B., Peng, S.-L.: Matching cut in graphs with large minimum degree. Algorithmica 83(5), 1238–1255 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  5. Chvátal, V.: Recognizing decomposable graphs. J. Graph Theory 8(1), 51–53 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  6. Darmann, A., Döcker, J.: On a simple hard variant of not-all-equal 3-SAT. Theor. Comput. Sci. 815, 147–152 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  7. De Werra, D., Demange, M., Escoffier, B., Monnot, J., Paschos, V.T.: Weighted coloring on planar, bipartite and split graphs: complexity and approximation. Discret. Appl. Math. 157(4), 819–832 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  8. Derhy, N., Picouleau, C.: Finding induced trees. Discret. Appl. Math. 157(17), 3552–3557 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  9. Diestel, R.: Graph Theory. Graduate Texts in Mathematics, vol. 173, 4th edn. Springer, Heidelberg (2012)

    MATH  Google Scholar 

  10. Bonnet, É., Chakraborty, D., Duron, J.: Cutting Barnette graphs perfectly is hard. arXiv:2302.11667 (2023)

  11. Feder, T., Hell, P., Subi, C.S.: Distance-two colourings of Barnette graphs. Eur. J. Comb. 91, 103210 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  12. Feder, T., Subi, C.S.: On Barnette’s conjecture. Electron. Colloquium Comput. Complex. TR06-015 (2006)

    Google Scholar 

  13. Feghali, C.: A note on matching-cut in P\({}_{\text{ t }}\)-free graphs. Inf. Process. Lett. 179, 106294 (2023)

    Article  MathSciNet  MATH  Google Scholar 

  14. Feghali, C., Lucke, F., Paulusma, D., Ries, B.: New hardness results for (perfect) matching cut and disconnected perfect matching. CoRR, abs/2212.12317 (2022)

    Google Scholar 

  15. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H. Freeman (1979)

    Google Scholar 

  16. Golovach, P.A., Komusiewicz, C., Kratsch, D., Le, V.B.: Refined notions of parameterized enumeration kernels with applications to matching cut enumeration. J. Comput. Syst. Sci. 123, 76–102 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  17. Hadlock, F.: Finding a maximum cut of a planar graph in polynomial time. SIAM J. Comput. 4(3), 221–225 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  18. Heggernes, P., Telle, J.A.: Partitioning graphs into generalized dominating sets. Nord. J. Comput. 5(2), 128–142 (1998)

    MathSciNet  MATH  Google Scholar 

  19. Karp, R.M.: Reducibility among combinatorial problems. In: Miller, R.E., Thatcher, J.W. (eds.) Proceedings of a Symposium on the Complexity of Computer Computations. The IBM Research Symposia Series, IBM Thomas J. Watson Research Center, Yorktown Heights, New York, USA, 20–22 March 1972, pp. 85–103. Plenum Press, New York (1972)

    Google Scholar 

  20. Kasteleyn, P.: Graph theory and crystal physics. Graph Theory Theor. Phys. 43–110 (1967)

    Google Scholar 

  21. Komusiewicz, C., Kratsch, D., Le, V.B.: Matching cut: kernelization, single-exponential time FPT, and exact exponential algorithms. Discret. Appl. Math 283, 44–58 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  22. Korobitsin, D.V.: On the complexity of domination number determination in monogenic classes of graphs (1992)

    Google Scholar 

  23. Kosowski, A., Małafiejski, M., Żyliński, P.: Parallel processing subsystems with redundancy in a distributed environment. In: Wyrzykowski, R., Dongarra, J., Meyer, N., Waśniewski, J. (eds.) PPAM 2005. LNCS, vol. 3911, pp. 1002–1009. Springer, Heidelberg (2006). https://doi.org/10.1007/11752578_121

    Chapter  MATH  Google Scholar 

  24. Kratsch, D., Le, V.B.: Algorithms solving the matching cut problem. Theor. Comput. Sci. 609, 328–335 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  25. Le, H.-O., Le, V.B.: A complexity dichotomy for matching cut in (bipartite) graphs of fixed diameter. Theor. Comput. Sci. 770, 69–78 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  26. Le, V.B., Telle, J.A.: The perfect matching cut problem revisited. Theor. Comput. Sci. 931, 117–130 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  27. Loverov, Ya.A., Orlovich, Y.L.: NP-completeness of the independent dominating set problem in the class of cubic planar bipartite graphs. J. Appl. Ind. Math. 14, 353–368 (2020)

    Google Scholar 

  28. Lucke, F., Paulusma, D., Ries, B.: Finding matching cuts in H-free graphs. In: Bae, S.W., Park, H. (eds.) 33rd International Symposium on Algorithms and Computation, ISAAC 2022. LIPIcs, Seoul, Korea, 19–21 December 2022, vol. 248, pp. 22:1–22:16. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2022)

    Google Scholar 

  29. Lucke, F., Paulusma, D., Ries, B.: On the complexity of matching cut for graphs of bounded radius and H-free graphs. Theor. Comput. Sci. 936, 33–42 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  30. Marx, D.: NP-completeness of list coloring and precoloring extension on the edges of planar graphs. J. Graph Theory 49(4), 313–324 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  31. Miotk, M., Topp, J., Żyliński, P.: Disjoint dominating and 2-dominating sets in graphs. Discret. Optim. 35, 100553 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  32. Moret, B.M.E.: Planar NAE3SAT is in P. SIGACT News 19(2), 51–54 (1988)

    Article  MATH  Google Scholar 

  33. Moshi, A.M.: Matching cutsets in graphs. J. Graph Theory 13(5), 527–536 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  34. Munaro, A.: On line graphs of subcubic triangle-free graphs. Discret. Math. 340(6), 1210–1226 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  35. Patrignani, M., Pizzonia, M.: The complexity of the matching-cut problem. In: Brandstädt, A., Le, V.B. (eds.) WG 2001. LNCS, vol. 2204, pp. 284–295. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45477-2_26

    Chapter  Google Scholar 

  36. Stockmeyer, L.J., Vazirani, V.V.: NP-completeness of some generalizations of the maximum matching problem. Inf. Process. Lett. 15(1), 14–19 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  37. Temperley, H.N.V., Fisher, M.E.: Dimer problem in statistical mechanics-an exact result. Philos. Mag. 6(68), 1061–1063 (1961)

    Article  MathSciNet  MATH  Google Scholar 

  38. Tutte, W.T.: The factorization of linear graphs. J. Lond. Math. Soc. 1(2), 107–111 (1947)

    Article  MathSciNet  MATH  Google Scholar 

  39. Vadhan, S.P.: The complexity of counting in sparse, regular, and planar graphs. SIAM J. Comput. 31(2), 398–427 (2001)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

We are much indebted to Carl Feghali for introducing us to the topic of (perfect) matching cuts, and presenting us with open problems that led to the current paper. We also wish to thank him and Kristóf Huszár for helpful discussions on an early stage of the project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dibyayan Chakraborty .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bonnet, É., Chakraborty, D., Duron, J. (2023). Cutting Barnette Graphs Perfectly is Hard. In: Paulusma, D., Ries, B. (eds) Graph-Theoretic Concepts in Computer Science. WG 2023. Lecture Notes in Computer Science, vol 14093. Springer, Cham. https://doi.org/10.1007/978-3-031-43380-1_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-43380-1_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-43379-5

  • Online ISBN: 978-3-031-43380-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics