Skip to main content

Are Virtual Reality Serious Games Safe for Children? Design Keys to Avoid Motion Sickness and Visual Fatigue

  • Conference paper
  • First Online:
Extended Reality (XR Salento 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14218))

Included in the following conference series:

Abstract

Designing serious games in virtual reality (VR) may raise a health and safety concern as to whether children should use this technology. This paper attempts to clarify this issue by studying VR impact on children’s physical, cognitive and psychosocial development. With a supervised and controlled use over time, it is found that VR could cause physical problems as motion sickness and visual fatigue. To avoid these issues, a series of VR design guidelines are collected so researchers can follow them to develop serious games for children. To avoid motion sickness, developers have to: 1) regulate free movement in the virtual environment and add visual effects or references, 2) help to maintain a stable body posture during the game, 3) bring interactive objects closer and allow their manipulation in non-gravity condition, 4) adjust the difficulty of the tasks and make them as interactive as possible, and 5) implement quality visual and sound content. Regarding the reduction of visual fatigue, developers need to: 1) regulate and supervise the game time, 2) choose an HMD that offers good graphic definition, and 3) design the user interface to be easily understandable and legible.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Martinez, K.K., Menéndez, M.I.M., Bustillo, A.: Awareness, prevention, detection, and therapy applications for depression and anxiety in serious games for children and adolescents: systematic review. JMIR Serious Games 9(4), e30482 (2021). https://doi.org/10.2196/30482

    Article  Google Scholar 

  2. Martinez, K.K., Menéndez, M.I.M., Bustillo, A.: A new measure for serious games evaluation: gaming educational balanced (GEB) model. Appl. Sci. 12(22), 11757 (2022). https://doi.org/10.3390/app122211757

    Article  Google Scholar 

  3. Checa, D., Bustillo, A.: A review of immersive virtual reality serious games to enhance learning and training. Multimedia Tools Appl. 79(9–10), 5501–5527 (2020). https://doi.org/10.1007/s11042-019-08348-9

    Article  Google Scholar 

  4. Kaimara, P., Oikonomou, A., Deliyannis, I.: Could virtual reality applications pose real risks to children and adolescents? Virtual Reality. Published, A systematic review of ethical issues and concerns (2021). https://doi.org/10.1007/s10055-021-00563-w

    Book  Google Scholar 

  5. Rebenitsch, L., Owen, C.: Review on cybersickness in applications and visual displays. Virtual Real 20, 101–125 (2016). https://doi.org/10.1007/s10055-016-0285-9

  6. Tychsen, L., Foeller, P.: Effects of immersive virtual reality headset viewing on young children: visuomotor function, postural stability, and motion sickness. Am. J. Ophthalmol. 209, 151–159 (2020). https://doi.org/10.1016/j.ajo.2019.07.020

  7. Rechichi, C., De Moja, G., Aragona, P.: Video game vision syndrome: a new clinical picture in children? J. Pediatr. Ophthalmol. Strabismus. 54, 346–355 (2017). https://doi.org/10.3928/01913913-20170510-01

  8. Hirota, M., et al.: Comparison of visual fatigue caused by head-mounted display for virtual reality and two-dimensional display using objective and subjective evaluation. Ergonomics 62, 759–766 (2019). https://doi.org/10.1080/00140139.2019.1582805

  9. Bennett, C.R., Bailin, E.S., Gottlieb, T.K., Bauer, C.M., Bex, P.J., Merabet, L.B.: Assessing visual search performance in ocular compared to cerebral visual impairment using a virtual reality simulation of human dynamic movement. In: Proceedings of the Technology, Mind, and Society (TechMindSociety 2018). ACM Press, New York, pp 1–6 (2018)

    Google Scholar 

  10. Malihi, M., Nguyen, J., Cardy, R.E., Eldon, S., Petta, C., Kushki, A.: Short report: evaluating the safety and usability of headmounted virtual reality compared to monitor-displayed video for children with autism spectrum disorder. Autism 24, 1924–1929 (2020). https://doi.org/10.1177/1362361320934214

  11. Gheller, B.J.F., et al.: Effect of video game playing and a glucose preload on subjective appetite, subjective emotions, and food intake in overweight and obese boys. Appl. Physiol. Nutr. Metab. 44, 248–254 (2019). https://doi.org/10.1139/apnm-2018-0281

  12. Cappuccio, F.P., Miller, M.A.: Sleep and cardio-metabolic disease. Curr. Cardiol. Rep. 19, 110 (2017). https://doi.org/10.1007/s11886-017-0916-0

  13. Gottschalk, F.: Impacts of technology use on children: exploring literature on the brain, cognition and well-being. OECD Educ. Work Pap. 195, 45 (2019). https://doi.org/10.1787/8296464e-en

    Google Scholar 

  14. Tosini, G., Ferguson, I., Tsubota, K.: Effects of blue light on the circadian system and eye physiology. Molvis 22, 61–72 (2016)

    Google Scholar 

  15. Fokides, E.: Digital educational games in primary education. In: Daniela, L. (ed.) Epistemological Approaches to Digital Learning in Educational Contexts, pp. 54–68. Routledge (2020)

    Chapter  Google Scholar 

  16. Boyle, E.A., et al.: An update to the systematic literature review of empirical evidence of the impacts and outcomes of computer games and serious games. Comput. Educ. 94, 178–192 (2016). https://doi.org/10.1016/j.compedu.2015.11.003

  17. Granic, I., Lobel, A., Engels, R.C.M.E.: The benefits of playing video games. Am. Psychol. 69, 66–78 (2014). https://doi.org/10.1037/a0034857

  18. Dalgarno, B., Lee, M.J.W.: What are the learning affordances of 3-D virtual environments? Br. J. Educ. Technol. 41, 10–32 (2010). https://doi.org/10.1111/j.1467-8535.2009.01038.x

  19. Parong, J., Mayer, R.E.: Cognitive consequences of playing braintraining games in immersive virtual reality. Appl. Cogn. Psychol. 34, 29–38 (2020). https://doi.org/10.1002/acp.3582

  20. Nolin, P., et al.: Clinica VR: classroom-CPT: a virtual reality tool for assessing attention and inhibition in children and adolescents. Comput. Human Behav. 59, 327–333 (2016). https://doi.org/10.1016/j.chb.2016.02.023

  21. Passig, D., Tzuriel, D., Eshel-Kedmi, G.: Improving children’s cognitive modifiability by dynamic assessment in 3D immersive virtual reality environments. Comput. Educ. 95, 296–308 (2016). https://doi.org/10.1016/j.compedu.2016.01.009

  22. Mesa-Gresa, P., Gil-Gomez, H., Lozano-Quilis, J-A., Gil-Gomez, J-A.: Effectiveness of virtual reality for children and adolescents with autism spectrum disorder: an evidence-based systematic review. Sensors 18, 2486 (2018). https://doi.org/10.3390/s18082486

  23. Newbutt, N., Sung, C., Kuo, J., Leahy, M.J.: The acceptance, challenges, and future applications of wearable technology and virtual reality to support people with autism spectrum disorders. In: Brooks, A., Brahnam, S., Kapralos, B., Jain, L. (eds.) Recent Advances in Technologies for Inclusive Well-being, Intelligent Systems Reference Library, vol. 119, pp. 221–241. Springer, Cham (2017)

    Google Scholar 

  24. Blume, F., et al.: NIRS-based neurofeedback training in a virtual reality classroom for children with attention-deficit/hyperactivity disorder: study protocol for a randomized controlled trial. Trials 18, 41 (2017). https://doi.org/10.1186/s13063-016-1769-3

  25. Woolley, J.D., Ghossainy, M.E.: Revisiting the fantasy-reality distinction: children as Naive skeptics. Child Dev. 84, 1496–1510 (2013). https://doi.org/10.1186/s13063-016-1769-3

  26. Pallavicini, F., Pepe, A.: Virtual reality games and the role of body involvement in enhancing positive emotions and decreasing anxiety: within-subjects pilot study. JMIR Serious Games 8(2), e15635 (2019). https://doi.org/10.2196/15635

    Article  Google Scholar 

  27. Newbutt, N., Bradley, R., Conley, I.: Using virtual reality headmounted displays in schools with autistic children: views, experiences, and future directions. Cyberpsychol. Behav. Soc. Netw. 23, 23–33 (2020). https://doi.org/10.1089/cyber.2019.0206

  28. Lobel, A., Engels, R.C.M.E., Stone, L.L., Burk, W.J., Granic, I.: Video gaming and children’s psychosocial wellbeing: a longitudinal study. J. Youth Adolesc. 46, 884–897 (2017). https://doi.org/10.1007/s10964-017-0646-z

  29. Adjorlu, A., Serafin, S.: Head-mounted display-based virtual reality as a tool to reduce disruptive behavior in a student diagnosed with autism spectrum disorder. In: Brooks, A., Brooks, E.I. (eds.) Interactivity, Game Creation, Design, Learning, and Innovation: 8th EAI International Conference, ArtsIT 2019, and 4th EAI International Conference, DLI 2019, proceedings, pp. 739–748. Springer, Cham (2020)

    Chapter  Google Scholar 

  30. Madary, M., Metzinger, T.K.: Recommendations for good scientific practice and the consumers of VR-Technology. Front. Robot. AI 3, 1–23 (2016). https://doi.org/10.3389/frobt.2016.00003

  31. Chen, Y., Wu, Z.: A review on ergonomics evaluations of virtual reality. Work J. Prevent. Assess. Rehabil. 74(3), 831–841 (2022). https://doi.org/10.3233/wor-205232

    Article  Google Scholar 

  32. Kamal, A., Andujar, C.: Designing, testing and adapting navigation techniques for the immersive web. Comput. Graph. 106, 66–76 (2022). https://doi.org/10.1016/j.cag.2022.05.015

    Article  Google Scholar 

  33. Bailey, G.S., Arruda, D.G., Stoffregen, T.: Using quantitative data on postural activity to develop methods to predict and prevent cybersickness. Front. Virtual Real. 3,(2022). https://doi.org/10.3389/frvir.2022.1001080

  34. Rhiu, I., Kim, Y.J., Kim, W., Yun, M.H.: The evaluation of user experience of a human walking and a driving simulation in the virtual reality. Int. J. Ind. Ergon. 79, 103002 (2020). https://doi.org/10.1016/j.ergon.2020.103002

    Article  Google Scholar 

  35. Groth, C., Tauscher, J., Heesen, N., Alldieck, T., Castillo, S., Magnor, M.: Mitigation of cybersickness in immersive 360°videos. In: 2021 IEEE Conference on Virtual Reality and 3D User Interfaces Abstracts and Workshops (VRW), pp. 169–177 (2021). https://doi.org/10.1109/vrw52623.2021.00039

  36. Wu, F., Bailey, G.S., Stoffregen, T.A.: Rosenberg, E. S.: Don’t block the ground: reducing discomfort in virtual reality with an asymmetric field-of-view restrictor. In: Symposium on Spatial User Interaction, pp. 1–10 (2021).https://doi.org/10.1145/3485279.3485284

  37. Cao, Z., Jerald, J., Kopper, R.: Visually-induced motion sickness reduction via static and dynamic rest frames. In:IEEE Virtual Reality Conference(2018). https://doi.org/10.1109/vr.2018.8446210

  38. Dorado, J., Figueroa, P.: Ramps are better than stairs to reduce cybersickness in applications based on a HMD and a Gamepad. In: Symposium on 3D User Interfaces, pp. 47–50 (2014). https://doi.org/10.1109/3dui.2014.6798841

  39. Lohman, J., Turchet, L.: Evaluating cybersickness of walking on an omnidirectional treadmill in virtual reality. IEEE Trans. Hum. Mach. Syst. 52(4), 613–623 (2022). https://doi.org/10.1109/thms.2022.3175407

    Article  Google Scholar 

  40. Chardonnet, J., Mirzaei, M.A., Merienne, F.: Visually induced motion sickness estimation and prediction in virtual reality using frequency components analysis of postural sway signal. In HAL (Le Centre pour la Communication Scientifique Directe). Le Centre pour la Communication Scientifique Directe (2015)

    Google Scholar 

  41. Baykal, G.E., Leylekoğlu, A., Arslan, S., Ozer, D.: Studying children’s object interaction in virtual reality: a manipulative gesture taxonomy for vr hand tracking. In: Extended Abstracts of the 2023 CHI Conference on Human Factors in Computing Systems, pp. 1–7 (2023). https://doi.org/10.1145/3544549.3585865

  42. Bogerd, C.P., et al.: A review on ergonomics of headgear: thermal effects. Int. J. Ind. Ergon. 45, 1–12 (2015). https://doi.org/10.1016/j.ergon.2014.10.004

    Article  Google Scholar 

  43. Venkatakrishnan, R., Venkatakrishnan, R., Anaraky, R.G., Volonte, M., Knijnenburg, B.P., Babu, S.V.: A structural equation modeling approach to understand the relationship between control, cybersickness and presence in virtual reality. In: IEEE Virtual Reality Conference (2020). https://doi.org/10.1109/vr46266.2020.1581195115265

  44. Sepich, N.C., Jasper, A., Fieffer, S., Gilbert, S.B., Dorneich, M.C., Kelly, J.W.: The impact of task workload on cybersickness. Front. Virt. Real. 3,(2022). https://doi.org/10.3389/frvir.2022.943409

  45. Watanabe, K., Takahashi, M.: Head-synced drone control for reducing virtual reality sickness. J. Intell. Rob. Syst. 97(3–4), 733–744 (2020). https://doi.org/10.1007/s10846-019-01054-6

    Article  Google Scholar 

  46. Keshavarz, B., Hecht, H.: Pleasant music as a countermeasure against visually induced motion sickness. Appl. Ergon. 45(3), 521–527 (2014). https://doi.org/10.1016/j.apergo.2013.07.009

    Article  Google Scholar 

  47. Boyd, K.: Computers, digital devices, and eye strain. American Academy of Ophthalmology (4 March 2020). https://www.aao.org/eye-health/tips-prevention/computer-usage

  48. Standard Activities Board. IEEE Standard for Head-Mounted Display (HMD)-Based Virtual Reality (VR) Sickness Reduction Technology (2020)

    Google Scholar 

  49. Lee, S., Kim, J.H., Son, H., Kwon, S., Lee, S.H.: A study of human factor for virtual reality text information implementation on head mounted-display. Asia-pacific J. Multimedia Serv. Convergent Art Hum. Sociol. 7(1), 229–238 (2017). https://doi.org/10.14257/ajmahs.2017.01.19

  50. Erickson, A., Kim, K., Bruder, G., Welch, G.C.: Effects of dark mode graphics on visual acuity and fatigue with virtual reality head-mounted displays. In: 2020 IEEE Conference on Virtual Reality and 3D User Interfaces (VR), pp. 434–442 (2020). https://doi.org/10.1109/vr46266.2020.00064

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kim Martinez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Martinez, K., Checa, D. (2023). Are Virtual Reality Serious Games Safe for Children? Design Keys to Avoid Motion Sickness and Visual Fatigue. In: De Paolis, L.T., Arpaia, P., Sacco, M. (eds) Extended Reality. XR Salento 2023. Lecture Notes in Computer Science, vol 14218. Springer, Cham. https://doi.org/10.1007/978-3-031-43401-3_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-43401-3_24

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-43400-6

  • Online ISBN: 978-3-031-43401-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics