Skip to main content

Detection of Stress Stimuli in Learning Contexts of iVR Environments

  • Conference paper
  • First Online:
Extended Reality (XR Salento 2023)

Abstract

The use of eye-tracking in immersive Virtual Reality (iVR) is becoming an important tool for improving the learning outcomes. Nevertheless, the best Machine Learning (ML) technologies for the exploitation of eye-tracking data is yet unclear. Actually, one of the main drawbacks of some ML technologies, such as classifiers, is the scarce labeled data for training models, being the process of data annotation time-consuming and expensive. This paper presents a complete experimentation where different ML algorithms were tested, both supervised and semi-supervised, for trying to identify the stressors/distractors present in iVR learning experiences simulating the operation of a bridge crane. Results shown that the use of semi-supervised techniques can improve the performance of the Machine Learning methods making possible the identification of stressful situations in iVR environments. The use of semi-supervised learning techniques makes possible training ML algorithms without the need of great amount of labeled data which makes the data exploitation cheaper and easier.

This work was supported by the Junta de Castilla y León under project BU055P20 (JCyL/FEDER, UE), the Ministry of Science and Innovation of Spain under project PID2020-119894GB-I00, co-financed through European Union FEDER funds. This work is part of the project Humanaid (TED2021-129485B-C43) funded by MCIN/AEI/10.13039/501100011033 and the European Union “NextGenerationEU”/PRTR. We also acknowledge European Union NextGenerationEU/PRTR funds for the Margarita Salas 2022–2024 Grant awarded by Universidad de Burgos. It also was supported through the Consejería de Educación of the Junta de Castilla y León and the European Social Fund through a pre-doctoral grant (EDU/875/2021).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Broadly speaking, in ML community an ensemble is an algorithm (meta-model) that is composed by several algorithms (base models/estimators) that work together [14]. The decisions made by an ensemble depend on the predictions of the base models.

  2. 2.

    The source code for the Machine Learning experimentation can be publicly accessed from the following link: https://github.com/Josemi/StressDetection_iVR.

References

  1. Balcan, M.F., et al.: Person identification in webcam images: an application of semi-supervised learning. In: ICML 2005 Workshop on Learning with Partially Classified Training Data, vol. 2 (2005)

    Google Scholar 

  2. Beilock, S.L., Ramirez, G.: Chapter five - on the interplay of emotion and cognitive control: implications for enhancing academic achievement. In: Psychology of Learning and Motivation, vol. 55, pp. 137–169. Academic Press (2011). https://doi.org/10.1016/B978-0-12-387691-1.00005-3. https://www.sciencedirect.com/science/article/pii/B9780123876911000053

  3. Blum, A., Mitchell, T.: Combining labeled and unlabeled data with co-training. In: Proceedings of the Eleventh Annual Conference on Computational Learning Theory, pp. 92–100 (1998)

    Google Scholar 

  4. Breiman, L.: Random forests. Mach. Learn. 45, 5–32 (2001)

    Article  MATH  Google Scholar 

  5. Chebli, A., Djebbar, A., Marouani, H.F.: Semi-supervised learning for medical application: a survey. In: 2018 International Conference on Applied Smart Systems (ICASS), pp. 1–9. IEEE (2018)

    Google Scholar 

  6. Checa, D., Bustillo, A.: A review of immersive virtual reality serious games to enhance learning and training. Multimedia Tools Appl. 79, 5501–5527 (2020)

    Article  Google Scholar 

  7. Chiossi, F., Welsch, R., Villa, S., Chuang, L., Mayer, S.: Virtual reality adaptation using electrodermal activity to support the user experience. Big Data Cogn. Comput. 6(2), 55 (2022)

    Article  Google Scholar 

  8. Cho, D., et al.: Detection of stress levels from biosignals measured in virtual reality environments using a kernel-based extreme learning machine. Sensors 17(10), 2435 (2017)

    Article  Google Scholar 

  9. Christ, M., Braun, N., Neuffer, J., Kempa-Liehr, A.W.: Time series FeatuRe extraction on basis of scalable hypothesis tests (tsfresh - a python package). Neurocomputing 307, 72–77 (2018). https://doi.org/10.1016/j.neucom.2018.03.067

    Article  Google Scholar 

  10. Christ, M., Kempa-Liehr, A.W., Feindt, M.: Distributed and parallel time series feature extraction for industrial big data applications. arXiv preprint arXiv:1610.07717 (2016)

  11. Dincelli, E., Yayla, A.: Immersive virtual reality in the age of the metaverse: a hybrid-narrative review based on the technology affordance perspective. J. Strat. Inf. Syst. 31(2), 101717 (2022)

    Article  Google Scholar 

  12. Garrido-Labrador, J.L.: jlgarridol/sslearn: v1.0.3.1 (2023). https://doi.org/10.5281/zenodo.7781117

  13. Joëls, M., Pu, Z., Wiegert, O., Oitzl, M.S., Krugers, H.J.: Learning under stress: how does it work? Trends Cogn. Sci. 10(4), 152–158 (2006). https://doi.org/10.1016/j.tics.2006.02.002. https://www.sciencedirect.com/science/article/pii/S1364661306000453

  14. Kuncheva, L.I.: Combining Pattern Classifiers: Methods and Algorithms. John Wiley & Sons, Hoboken (2014)

    Book  MATH  Google Scholar 

  15. Li, M., Zhou, Z.H.: Improve computer-aided diagnosis with machine learning techniques using undiagnosed samples. IEEE Trans. Syst. Man Cybern.-Part A: Syst. Hum. 37(6), 1088–1098 (2007)

    Article  Google Scholar 

  16. Liang, B., Lin, Y.: Using physiological and behavioral measurements in a picture-based road hazard perception experiment to classify risky and safe drivers. Transp. Res. Part F: Traffic Psychol. Behav. 58, 93–105 (2018)

    Article  Google Scholar 

  17. Liang, P.: Semi-supervised learning for natural language. Ph.D. thesis, Massachusetts Institute of Technology (2005)

    Google Scholar 

  18. Livieris, I.E., Drakopoulou, K., Tampakas, V.T., Mikropoulos, T.A., Pintelas, P.: Predicting secondary school students’ performance utilizing a semi-supervised learning approach. J. Educ. Comput. Res. 57(2), 448–470 (2019)

    Article  Google Scholar 

  19. Melo-Acosta, G.E., Duitama-Munoz, F., Arias-Londono, J.D.: Fraud detection in big data using supervised and semi-supervised learning techniques. In: 2017 IEEE Colombian Conference on Communications and Computing (COLCOM), pp. 1–6. IEEE (2017)

    Google Scholar 

  20. Miguel-Alonso, I., Rodriguez-Garcia, B., Checa, D., Bustillo, A.: Countering the novelty effect: a tutorial for immersive virtual reality learning environments. Appl. Sci. 13(1) (2023). https://doi.org/10.3390/app13010593. https://www.mdpi.com/2076-3417/13/1/593

  21. Okaro, I.A., Jayasinghe, S., Sutcliffe, C., Black, K., Paoletti, P., Green, P.L.: Automatic fault detection for laser powder-bed fusion using semi-supervised machine learning. Addit. Manuf. 27, 42–53 (2019). https://doi.org/10.1016/j.addma.2019.01.006

    Article  Google Scholar 

  22. Pedregosa, F., et al.: Scikit-learn: machine learning in python. J. Mach. Learn. Res. 12, 2825–2830 (2011)

    MathSciNet  MATH  Google Scholar 

  23. Plunk, A., Amat, A.Z., Tauseef, M., Peters, R.A., Sarkar, N.: Semi-supervised behavior labeling using multimodal data during virtual teamwork-based collaborative activities. Sensors 23(7), 3524 (2023). https://doi.org/10.3390/s23073524

    Article  Google Scholar 

  24. Sandi, C.: Stress and cognition. Wiley Interdisc. Rev. Cogn. Sci. 4(3), 245–261 (2013)

    Article  Google Scholar 

  25. Schwabe, L., Hermans, E.J., Joëls, M., Roozendaal, B.: Mechanisms of memory under stress. Neuron 110(9), 1450–1467 (2022). https://doi.org/10.1016/j.neuron.2022.02.020

    Article  Google Scholar 

  26. Serrano-Mamolar, A., Miguel-Alonso, I., Checa, D., Pardo-Aguilar, C.: Towards learner performance evaluation in iVR learning environments using eye-tracking and machine-learning. Comunicar 31(76), 9–19 (2023)

    Article  Google Scholar 

  27. Triguero, I., García, S., Herrera, F.: Self-labeled techniques for semi-supervised learning: taxonomy, software and empirical study. Knowl. Inf. Syst. 42, 245–284 (2015)

    Article  Google Scholar 

  28. Van Engelen, J.E., Hoos, H.H.: A survey on semi-supervised learning. Mach. Learn. 109(2), 373–440 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  29. Yarowsky, D.: Unsupervised word sense disambiguation rivaling supervised methods. In: 33rd Annual Meeting of the Association for Computational Linguistics, pp. 189–196 (1995)

    Google Scholar 

  30. Zhang, Z., Wen, F., Sun, Z., Guo, X., He, T., Lee, C.: Artificial intelligence-enabled sensing technologies in the 5g/internet of things era: from virtual reality/augmented reality to the digital twin. Adv. Intell. Syst. 4(7), 2100228 (2022). https://doi.org/10.1002/aisy.202100228

    Article  Google Scholar 

  31. Zhou, Y., Goldman, S.: Democratic co-learning. In: 16th IEEE International Conference on Tools with Artificial Intelligence, pp. 594–602. IEEE (2004)

    Google Scholar 

  32. Zhou, Z.H., Li, M.: Tri-training: exploiting unlabeled data using three classifiers. IEEE Trans. Knowl. Data Eng. 17(11), 1529–1541 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Álvar Arnaiz-González .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ramírez-Sanz, J.M., Peña-Alonso, H.M., Serrano-Mamolar, A., Arnaiz-González, Á., Bustillo, A. (2023). Detection of Stress Stimuli in Learning Contexts of iVR Environments. In: De Paolis, L.T., Arpaia, P., Sacco, M. (eds) Extended Reality. XR Salento 2023. Lecture Notes in Computer Science, vol 14219. Springer, Cham. https://doi.org/10.1007/978-3-031-43404-4_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-43404-4_29

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-43403-7

  • Online ISBN: 978-3-031-43404-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics