Skip to main content

Semi-supervised Learning from Active Noisy Soft Labels for Anomaly Detection

  • Conference paper
  • First Online:
Machine Learning and Knowledge Discovery in Databases: Research Track (ECML PKDD 2023)

Abstract

Anomaly detection aims at detecting examples that do not conform to normal behavior. Increasingly, anomaly detection is being approached from a semi-supervised perspective where active learning is employed to acquire a small number of strategically selected labels. However, because anomalies are not always well-understood events, the user may be uncertain about how to label certain instances. Thus, one can relax this request and allow the user to provide soft labels (i.e., probabilistic labels) that represent their belief that a queried example is anomalous. These labels are naturally noisy due to the user’s inherent uncertainty in the label and the fact that people are known to be bad at providing well-calibrated probability instances. To cope with these challenges, we propose to exploit a Gaussian Process to learn from actively acquired soft labels in the context of anomaly detection. This enables leveraging information about nearby examples to smooth out possible noise. Empirically, we compare our proposed approach to several baselines on 21 datasets and show that it outperforms them in the majority of experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The code and Supplement are available via https://github.com/TimoM99/SLADe.

  2. 2.

    Results for \(0\%\) and \(10\%\) noise are, for completeness, in the Supplement.

References

  1. Abe, N., Zadrozny, B., Langford, J.: Outlier detection by active learning. In: 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 504–509. Springer (2006)

    Google Scholar 

  2. Angiulli, F., Pizzuti, C.: Fast outlier detection in high dimensional spaces. In: Elomaa, T., Mannila, H., Toivonen, H. (eds.) PKDD 2002. LNCS, vol. 2431, pp. 15–27. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45681-3_2

  3. Buhmann, M.D.: Radial basis functions. Acta Numer. 9, 1–38 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  4. Campos, G.O., et al.: On the evaluation of unsupervised outlier detection: measures, datasets, and an empirical study. Data Mining Knowl. Discov. 30, 891–927 (2016)

    Google Scholar 

  5. Ding, Y., Wang, L., Fan, D., Gong, B.: A semi-supervised two-stage approach to learning from noisy labels. In: 2018 IEEE Winter Conference on Applications of Computer Vision, pp. 1215–1224. IEEE (2018)

    Google Scholar 

  6. Ebert, S., Fritz, M., Schiele, B.: Ralf: a reinforced active learning formulation for object class recognition. In: 2012 IEEE Conference on Computer Vision and Pattern Recognition. IEEE (2012)

    Google Scholar 

  7. Frénay, B., Verleysen, M.: Classification in the presence of label noise: a survey. IEEE Trans. Neural Netw. Learn. Syst. 25(5), 845–869 (2013)

    Article  Google Scholar 

  8. Fujimaki, R., Yairi, T., Machida, K.: An approach to spacecraft anomaly detection problem using kernel feature space. In: 11th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 401–410. Association for Computing Machinery (2005)

    Google Scholar 

  9. Griffin, D., Tversky, A.: The weighing of evidence and the determinants of confidence. Cognit. Psychol. 24(3), 411–435 (1992)

    Article  Google Scholar 

  10. Guthrie, D., Guthrie, L., Allison, B., Wilks, Y.: Unsupervised anomaly detection. In: 20th International Joint Conference on Artificial Intelligence, pp. 1624–1628. Morgan Kaufmann Publishers (2007)

    Google Scholar 

  11. Hacohen, G., Dekel, A., Weinshall, D.: Active learning on a budget: opposite strategies suit high and low budgets. In: 39th International Conference on Machine Learning, pp. 8175–8195. PMLR (2022)

    Google Scholar 

  12. Han, S., Hu, X., Huang, H., Jiang, M., Zhao, Y.: Adbench: anomaly detection benchmark. Adv. Neural Inf. Process. Syst. 35, 32142–32159 (2022)

    Google Scholar 

  13. He, Z., Xu, X., Deng, S.: Discovering cluster-based local outliers. Pattern Recognit. Lett. 24(9–10), 1641–1650 (2003)

    Article  MATH  Google Scholar 

  14. Huang, J., Ling, C.: Using AUC and accuracy in evaluating learning algorithms. IEEE Trans. Knowl. Data Eng. 17(3), 299–310 (2005)

    Article  Google Scholar 

  15. Juslin, P., Olsson, H., Winman, A.: The calibration issue: theoretical comments on suantak, bolger, and ferrell (1996). Organiz. Behav. Human Decis. Process. 73(1), 3–26 (1998)

    Article  Google Scholar 

  16. Kapoor, A., Grauman, K., Urtasun, R., Darrell, T.: Active learning with gaussian processes for object categorization. In: 11th IEEE International Conference on Computer Vision, pp. 1–8. IEEE (2007)

    Google Scholar 

  17. Kowalska, K., Peel, L.: Maritime anomaly detection using gaussian process active learning. In: 15th IEEE International Conference on Information Fusion, pp. 1164–1171. IEEE (2012)

    Google Scholar 

  18. Kriegel, H.P., Kroger, P., Schubert, E., Zimek, A.: Interpreting and unifying outlier scores. In: 2011 SIAM International Conference on Data Mining, pp. 13–24. SIAM (2011)

    Google Scholar 

  19. Lazarevic, A., Ertoz, L., Kumar, V., Ozgur, A., Srivastava, J.: A comparative study of anomaly detection schemes in network intrusion detection. In: 2003 SIAM International Conference on Data Mining, pp. 25–36. SIAM (2003)

    Google Scholar 

  20. Lin, C.F., Wang, S.D.: Fuzzy support vector machines. IEEE Trans. Neural Netw. 13(2), 464–471 (2002)

    Article  Google Scholar 

  21. Littlestone, N., Warmuth, M.: The weighted majority algorithm. Inf. Comput. 108(2), 212–261 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  22. Liu, F.T., Ting, K.M., Zhou, Z.H.: Isolation forest. In: Eighth IEEE International Conference on Data Mining, pp. 413–422. IEEE (2008)

    Google Scholar 

  23. Marteau, P.F., Soheily-Khah, S., Béchet, N.: Hybrid isolation forest-application to intrusion detection. arXiv preprint arXiv:1705.03800 (2017)

  24. Monarch, R.M.: Human-in-the-Loop Machine Learning: Active Learning and Annotation for Human-Centered AI. Simon and Schuster (2021)

    Google Scholar 

  25. Nassar, L., Karray, F.: Overview of the crowdsourcing process. Knowl. Inf. Syst. 60, 1–24 (2019)

    Article  Google Scholar 

  26. Nguyen, Q., Valizadegan, H., Hauskrecht, M.: Learning classification models with soft-label information. J. Am. Med. Inf. Assoc. 21(3), 501–508 (2014)

    Article  Google Scholar 

  27. Nguyen, Q., Valizadegan, H., Seybert, A., Hauskrecht, M.: Sample-efficient learning with auxiliary class-label information. In: 2011 AMIA Annual Symposium, pp. 1004–1012. American Medical Informatics Association (2011)

    Google Scholar 

  28. Niaf, E., Flamary, R., Rouviere, O., Lartizien, C., Canu, S.: Kernel-based learning from both qualitative and quantitative labels: application to prostate cancer diagnosis based on multiparametric mr imaging. IEEE Trans. Image Process. 23(3), 979–991 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  29. Pang, G., Shen, C., van den Hengel, A.: Deep anomaly detection with deviation networks. In: 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 353–362. Association for Computing Machinery (2019)

    Google Scholar 

  30. Pang, G., Shen, C., Jin, H., Hengel, A.V.D.: Deep weakly-supervised anomaly detection. arXiv preprint arXiv:1910.13601 (2019)

  31. Peng, P., Wong, R.C.W., Yu, P.S.: Learning on probabilistic labels. In: 2014 SIAM International Conference on Data Mining, pp. 307–315. SIAM (2014)

    Google Scholar 

  32. Perini, L., Bürkner, P., Klami, A.: Estimating the contamination factor’s distribution in unsupervised anomaly detection. In: Fortieth International Conference on Machine Learning. PMLR (2023)

    Google Scholar 

  33. Perini, L., Vercruyssen, V., Davis, J.: Class prior estimation in active positive and unlabeled learning. In: 29th International Joint Conference on Artificial Intelligence and the 17th Pacific Rim International Conference on Artificial Intelligence, pp. 2915–2921. IJCAI-PRICAI (2020)

    Google Scholar 

  34. Perini, L., Vercruyssen, V., Davis, J.: Transferring the contamination factor between anomaly detection domains by shape similarity. In: 36th AAAI Conference on Artificial Intelligence, pp. 4128–4136. AAAI Press (2022)

    Google Scholar 

  35. Pimentel, T., Monteiro, M., Veloso, A., Ziviani, N.: Deep active learning for anomaly detection. In: 2020 IEEE International Joint Conference on Neural Networks, pp. 1–8. IEEE (2020)

    Google Scholar 

  36. Pustokhina, I., Seraj, A., Hafsan, H., Mostafavi, S.M., Alizadeh, S.: Developing a robust model based on the gaussian process regression approach to predict biodiesel properties. Int. J. Chem. Eng. 1–12 (2021)

    Google Scholar 

  37. Rasmussen, C.E.: Gaussian processes in machine learning. In: Bousquet, O., von Luxburg, U., Rätsch, G. (eds.) ML -2003. LNCS (LNAI), vol. 3176, pp. 63–71. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-28650-9_4

  38. Ratner, A., Hancock, B., Dunnmon, J., Goldman, R., Ré, C.: Snorkel metal: weak supervision for multi-task learning. In: Second Workshop on Data Management for End-to-End Machine Learning. Association for Computing Machinery (2018)

    Google Scholar 

  39. Raykar, V.C., et al.: Learning from crowds. J. Mach. Learn. Res. 11(4) (2010)

    Google Scholar 

  40. Ruff, L., et al.: Deep semi-supervised anomaly detection. arXiv preprint arXiv:1906.02694 (2019)

  41. Russo, S., Lürig, M., Hao, W., Matthews, B., Villez, K.: Active learning for anomaly detection in environmental data. Environ. Model. Softw. 134, 104869 (2020)

    Article  Google Scholar 

  42. Schölkopf, B., Platt, J.C., Shawe-Taylor, J., Smola, A.J., Williamson, R.C.: Estimating the support of a high-dimensional distribution. Neural Comput. 13(7), 1443–1471 (2001)

    Article  MATH  Google Scholar 

  43. Thiel, C.: Classification on soft labels is robust against label noise. In: Lovrek, I., Howlett, R.J., Jain, L.C. (eds.) KES 2008. LNCS (LNAI), vol. 5177, pp. 65–73. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-85563-7_14

  44. Vercruyssen, V., Meert, W., Verbruggen, G., Maes, K., Baumer, R., Davis, J.: Semi-supervised anomaly detection with an application to water analytics. In: 2018 IEEE International Conference on Data Mining, pp. 527–536. IEEE (2018)

    Google Scholar 

  45. Vercruyssen, V., Perini, L., Meert, W., Davis, J.: Multi-domain active learning for semi-supervised anomaly detection. In: 2022 European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases, pp. 485–501. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-26412-2_30

  46. Xuan, J., Lu, J., Zhang, G.: A survey on Bayesian nonparametric learning. ACM Comput. Surv. 52(1), 1–36 (2019)

    Article  Google Scholar 

  47. Zhao, Y., Hryniewicki, M.K.: Xgbod: improving supervised outlier detection with unsupervised representation learning. In: 2018 IEEE International Joint Conference on Neural Networks, pp. 1–8. IEEE (2018)

    Google Scholar 

  48. Zhao, Z., et al.: Enhancing robustness of on-line learning models on highly noisy data. IEEE Trans. Depend. Secure Comput. 18(05), 2177–2192 (2021)

    Google Scholar 

Download references

Acknowledgment

This work is supported by the FWO-Vlaanderen (aspirant grant 1166222N to LP and G0D8819N to JD and TM) and the Flemish government under the “Onderzoeksprogramma Artificiële Intelligentie (AI) Vlaanderen” programme (JD, LP).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Timo Martens .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Martens, T., Perini, L., Davis, J. (2023). Semi-supervised Learning from Active Noisy Soft Labels for Anomaly Detection. In: Koutra, D., Plant, C., Gomez Rodriguez, M., Baralis, E., Bonchi, F. (eds) Machine Learning and Knowledge Discovery in Databases: Research Track. ECML PKDD 2023. Lecture Notes in Computer Science(), vol 14169. Springer, Cham. https://doi.org/10.1007/978-3-031-43412-9_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-43412-9_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-43411-2

  • Online ISBN: 978-3-031-43412-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics