Skip to main content

KESHEM: Knowledge Enabled Short Health Misinformation Detection Framework

  • Conference paper
  • First Online:
Machine Learning and Knowledge Discovery in Databases: Research Track (ECML PKDD 2023)

Abstract

Health misinformation detection is a challenging but urgent problem in the field of information governance. In recent years, some studies have utilized long-form text detection models for this task, producing some promising early results. However, we found that most health information online is a short text, especially knowledge-based information. Meanwhile, the explainability of detection results is as important as the detection accuracy. There is no appropriate explainable short health misinformation detection model currently. To address these issues, we propose a novel Knowledge Enabled Short HEalth Misinformation detection framework, called KESHEM. This method extracts abundant knowledge from multiple, multi-form, and dynamically updated knowledge graphs (KGs) as supplementary material and effectively represents semantic features of the information contents and the external knowledge by powerful language models. KG-attention is then applied to distinguish the effects of each external knowledge for the information credibility reasoning and enhance the model’s explainability. We build a credible Chinese short text dataset for better evaluation and future research. Extensive experiments demonstrate that KESHEM significantly outperforms competing methods and accurately identifies important knowledge that explains the veracity of short health information.

This work is supported by the Fundamental Research Funds for the Central Universities and the Research Funds of Renmin University of China under grant No. 21XNL018.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://github.com/fenella0401/KESHEM.

  2. 2.

    https://github.com/dagege/huadingkg.

References

  1. Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J., Yakhnenko, O.: Translating embeddings for modeling multi-relational data. In: Neural Information Processing Systems (NIPS), pp. 1–9 (2013)

    Google Scholar 

  2. Cui, L., Seo, H., Tabar, M., Ma, F., Wang, S., Lee, D.: Deterrent: Knowledge guided graph attention network for detecting healthcare misinformation. In: Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 492–502 (2020)

    Google Scholar 

  3. Dai, E., Sun, Y., Wang, S.: Ginger cannot cure cancer: battling fake health news with a comprehensive data repository. In: International Conference on Web and Social Media (2020)

    Google Scholar 

  4. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186 (Jun 2019)

    Google Scholar 

  5. Dun, Y., Tu, K., Chen, C., Hou, C., Yuan, X.: Kan: Knowledge-aware attention network for fake news detection. In: AAAI Conference on Artificial Intelligence (2021)

    Google Scholar 

  6. Finney Rutten, L.J., Blake, K.D., Greenberg-Worisek, A.J., Allen, S.V., Moser, R.P., Hesse, B.W.: Online Health Information Seeking Among US Adults: Measuring Progress Toward a Healthy People 2020 Objective. Public Health Reports 6, 617–625 (2019)

    Google Scholar 

  7. Hochreiter, S., Schmidhuber, J.: Long Short-Term Memory. Neural Computation 9(8), 1735–1780 (1997)

    Google Scholar 

  8. Jiang, G., Liu, S., Zhao, Y., Sun, Y., Zhang, M.: Fake news detection via knowledgeable prompt learning. Inf. Process. Manage. 59, 103029 (2022)

    Article  Google Scholar 

  9. Karagiannis, G., Trummer, I., Jo, S., Khandelwal, S., Wang, X., Yu, C.: Mining an "Anti-Knowledge Base" from Wikipedia Updates with Applications to Fact Checking and Beyond (2019)

    Google Scholar 

  10. Kilicoglu, H., Shin, D., Fiszman, M., Rosemblat, G., Rindflesch, T.C.: SemMedDB: A PubMed-scale repository of biomedical semantic predications. Bioinformatics 28(23), 3158–3160 (2012)

    Google Scholar 

  11. Kim, Y.: Convolutional neural networks for sentence classification. In: Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing, pp. 1746–1751. Association for Computational Linguistics (2014)

    Google Scholar 

  12. Kolluri, N., Liu, Y., Murthy, D.: Covid-19 misinformation detection: Machine learned solutions to the infodemic (preprint). JMIR Infodemiology (2022)

    Google Scholar 

  13. Le, Q., Mikolov, T.: Distributed representations of sentences and documents. In: Proceedings of the 31st International Conference on International Conference on Machine Learning - Volume 32, p. II-1188-II-1196. ICML’14, JMLR.org (2014)

    Google Scholar 

  14. Li, J.: Detecting false information in medical and healthcare domains: a text mining approach. In: Chen, H., Zeng, D., Yan, X., Xing, C. (eds.) ICSH 2019. LNCS, vol. 11924, pp. 236–246. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-34482-5_21

    Chapter  Google Scholar 

  15. Li, Y., Marga, J.J., Cheung, C.M.K., Shen, X.L., Lee, M.K.O.: Health misinformation on social media: a systematic literature review and future research directions. AIS Trans. Human-Computer Interact. 14(2), 116–149 (2022)

    Google Scholar 

  16. Lin, T.Y., Goyal, P., Girshick, R., He, K., Dollár, P.: Focal loss for dense object detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2980–2988 (2017)

    Google Scholar 

  17. Liu, W., et al.: K-BERT: Enabling language representation with knowledge graph. In: AAAI Conference on Artificial Intelligence (2019)

    Google Scholar 

  18. Liu, Y., Yu, K., Wu, X., Qing, L., Peng, Y.: Analysis and detection of health-related misinformation on Chinese social media. IEEE Access 7 (2019)

    Google Scholar 

  19. OpenAI: Gpt-4 technical report. arXiv:abs/2303.08774 (2023)

  20. Pan, J.Z., Pavlova, S., Li, C., Li, N., Li, Y., Liu, J.: Content based fake news detection using knowledge graphs. Lecture Notes in Computer Science 11136 LNCS, pp. 669–683 (2018)

    Google Scholar 

  21. Qian, S., Hu, J., Fang, Q., Xu, C.: Knowledge-aware multi-modal adaptive graph convolutional networks for fake news detection. ACM Trans. Multimed. Comput., Commun. Appl. (TOMM) 17, 1–23 (2021)

    Google Scholar 

  22. Raffel, C., et al.: Exploring the limits of transfer learning with a unified text-to-text transformer. J. Mach. Learn. Res. 21(1), 5485–5551 (2019)

    Google Scholar 

  23. Rotmensch, M., Halpern, Y., Tlimat, A., Horng, S., Sontag, D.: Learning a health knowledge graph from electronic medical records. Sci. Reports 7(1) (2017)

    Google Scholar 

  24. Ruchansky, N., Seo, S., Liu, Y.: CSI: A Hybrid Deep Model for Fake News Detection. In: Proceedings of the 2017 ACM on Conference on Information and Knowledge Management. ACM (2017)

    Google Scholar 

  25. Saeed, F., Wael, Al-Sarem, M., Abdullah, E.: Detecting health-related rumors on twitter using machine learning methods. Int. J. Adv. Comput. Sci. Appl. 11(8) (2020)

    Google Scholar 

  26. Shu, K., Cui, L., Wang, S., Lee, D., Liu, H.: Defend: Explainable fake news detection. In:Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 395–405 (2019)

    Google Scholar 

  27. Speer, R., Chin, J., Havasi, C.: Conceptnet 5.5: An open multilingual graph of general knowledge. In: AAAI, pp. 4444–4451. AAAI Press (2017)

    Google Scholar 

  28. Sun, P., Wu, L., Zhang, K., Su, Y., Wang, M.: An unsupervised aspect-aware recommendation model with explanation text generation. ACM Trans. Inf. Syst. 40(3) (2021)

    Google Scholar 

  29. Upadhyay, R., Pasi, G., Viviani, M.: Health misinformation detection in web content: a structural-, content-based, and context-aware approach based on web2vec. In: Proceedings of the Conference on Information Technology for Social Good (2021)

    Google Scholar 

  30. Upadhyay, R., Pasi, G., Viviani, M.: Vec4cred: a model for health misinformation detection in web pages. Multimed. Tools Appl. 82, 1–20 (2022)

    Google Scholar 

  31. Vaswani, A., et al.: Attention is all you need. In: Advances in Neural Information Processing Systems. vol. 30. Curran Associates, Inc. (2017)

    Google Scholar 

  32. Wang, Y., Wang, L., Li, Y., He, D., Liu, T.Y., Chen, W.: A theoretical analysis of NDCG type ranking measures. J. Mach. Learn. Res. 30, 25–54 (2013)

    Google Scholar 

  33. Xu, B., et al.: CN-DBpedia: a never-ending Chinese knowledge extraction system. In: Benferhat, S., Tabia, K., Ali, M. (eds.) IEA/AIE 2017. LNCS (LNAI), vol. 10351, pp. 428–438. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-60045-1_44

    Chapter  Google Scholar 

  34. Zhang, Y., et al.: HKGB: An inclusive, extensible, intelligent, semi-auto-constructed knowledge graph framework for healthcare with clinicians’ expertise incorporated. Inform. Process. Manage. 57(6), 102324 (2020)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meiyun Zuo .

Editor information

Editors and Affiliations

Ethics declarations

Ethical Considerations

The work is based solely on public data, with no privacy implications. Our data came from Chinese rumor-refuting platforms, where data is publicly available. Thus, we have no ethical violation in the collection data and experiment in our study. In addition, the detection results of health misinformation can only serve as a preliminary assessment and support, and for serious scenarios, experienced experts are required to make further assessments.

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Liu, F., Li, Y., Zuo, M. (2023). KESHEM: Knowledge Enabled Short Health Misinformation Detection Framework. In: Koutra, D., Plant, C., Gomez Rodriguez, M., Baralis, E., Bonchi, F. (eds) Machine Learning and Knowledge Discovery in Databases: Research Track. ECML PKDD 2023. Lecture Notes in Computer Science(), vol 14169. Springer, Cham. https://doi.org/10.1007/978-3-031-43412-9_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-43412-9_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-43411-2

  • Online ISBN: 978-3-031-43412-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics