Skip to main content

DiffusAL: Coupling Active Learning with Graph Diffusion for Label-Efficient Node Classification

  • Conference paper
  • First Online:
Machine Learning and Knowledge Discovery in Databases: Research Track (ECML PKDD 2023)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 14169))

  • 2002 Accesses

Abstract

Node classification is one of the core tasks on attributed graphs, but successful graph learning solutions require sufficiently labeled data. To keep annotation costs low, active graph learning focuses on selecting the most qualitative subset of nodes that maximizes label efficiency. However, deciding which heuristic is best suited for an unlabeled graph to increase label efficiency is a persistent challenge. Existing solutions either neglect aligning the learned model and the sampling method or focus only on limited selection aspects. They are thus sometimes worse or only equally good as random sampling. In this work, we introduce a novel active graph learning approach called DiffusAL, showing significant robustness in diverse settings. Toward better transferability between different graph structures, we combine three independent scoring functions to identify the most informative node samples for labeling in a parameter-free way: i) Model Uncertainty, ii) Diversity Component, and iii) Node Importance computed via graph diffusion heuristics. Most of our calculations for acquisition and training can be pre-processed, making DiffusAL more efficient compared to approaches combining diverse selection criteria and similarly fast as simpler heuristics. Our experiments on various benchmark datasets show that, unlike previous methods, our approach significantly outperforms random selection in 100% of all datasets and labeling budgets tested.

S. Gilhuber and J. Busch—Equal contribution

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://github.com/lmu-dbs/diffusal.

  2. 2.

    On Physics, Degree underperformed considerably and is therefore omitted for better presentation.

References

  1. Ash, J.T., Zhang, C., Krishnamurthy, A., Langford, J., Agarwal, A.: Deep batch active learning by diverse, uncertain gradient lower bounds. In: ICLR (2020)

    Google Scholar 

  2. Battaglia, P.W., et al.: Relational inductive biases, deep learning, and graph networks. arXiv preprint arXiv:1806.01261 (2018)

  3. Bilgic, M., Mihalkova, L., Getoor, L.: Active learning for networked data. In: Proceedings of the 27th International Conference on Machine Learning (ICML 2010), pp. 79–86 (2010)

    Google Scholar 

  4. Borutta, F., Busch, J., Faerman, E., Klink, A., Schubert, M.: Structural graph representations based on multiscale local network topologies. In: WI-IAT (2019)

    Google Scholar 

  5. Bronstein, M.M., Bruna, J., LeCun, Y., Szlam, A., Vandergheynst, P.: Geometric deep learning: going beyond euclidean data. IEEE SPM 34(4), 18–42 (2017)

    Google Scholar 

  6. Busch, J., Kocheturov, A., Tresp, V., Seidl, T.: Nf-gnn: network flow graph neural networks for malware detection and classification. In: SSDBM (2021)

    Google Scholar 

  7. Busch, J., Pi, J., Seidl, T.: Pushnet: efficient and adaptive neural message passing. In: ECAI (2020)

    Google Scholar 

  8. Cai, H., Zheng, V.W., Chang, K.C.C.: Active learning for graph embedding. arXiv preprint arXiv:1705.05085 (2017)

  9. Chandra, A.L., Desai, S.V., Devaguptapu, C., Balasubramanian, V.N.: On initial pools for deep active learning. In: NeurIPS 2020 Workshop on Pre-registration in Machine Learning, pp. 14–32. PMLR (2021)

    Google Scholar 

  10. Contardo, G., Denoyer, L., Artières, T.: A meta-learning approach to one-step active-learning. In: AutoML@PKDD/ECML (2017)

    Google Scholar 

  11. Faerman, E., Borutta, F., Busch, J., Schubert, M.: Semi-supervised learning on graphs based on local label distributions. In: MLG (2018)

    Google Scholar 

  12. Faerman, E., Borutta, F., Busch, J., Schubert, M.: Ada-lld: adaptive node similarity using multi-scale local label distributions. In: WI-IAT (2020)

    Google Scholar 

  13. Fey, M., Lenssen, J.E.: Fast graph representation learning with PyTorch Geometric. In: ICLR Workshop on Representation Learning on Graphs and Manifolds (2019)

    Google Scholar 

  14. Frey, C.M.M., Ma, Y., Schubert, M.: Sea: graph shell attention in graph neural networks. In: European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases (2022)

    Google Scholar 

  15. Gao, L., Yang, H., Zhou, C., Wu, J., Pan, S., Hu, Y.: Active discriminative network representation learning. In: IJCAI (2018)

    Google Scholar 

  16. Gilmer, J., Schoenholz, S.S., Riley, P.F., Vinyals, O., Dahl, G.E.: Neural message passing for quantum chemistry. In: ICML, pp. 1263–1272. PMLR (2017)

    Google Scholar 

  17. Hamilton, W.L.: Graph representation learning. Synth. Lect. Artifi. Intell. Mach. Learn. 14(3), 1–159 (2020)

    MATH  Google Scholar 

  18. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: ICLR (2017)

    Google Scholar 

  19. Klicpera, J., Bojchevski, A., Günnemann, S.: Predict then propagate: graph neural networks meet personalized pagerank. In: ICLR (2019)

    Google Scholar 

  20. Klicpera, J., Weißenberger, S., Günnemann, S.: Diffusion improves graph learning. Adv. Neural. Inf. Process. Syst. 32, 13354–13366 (2019)

    Google Scholar 

  21. Lee, J.B., Rossi, R., Kong, X.: Graph classification using structural attention. In: KDD, pp. 1666–1674 (2018)

    Google Scholar 

  22. Li, Q., Han, Z., Wu, X.M.: Deeper insights into graph convolutional networks for semi-supervised learning. In: AAAI (2018)

    Google Scholar 

  23. Liu, J., Wang, Y., Hooi, B., Yang, R., Xiao, X.: Lscale: latent space clustering-based active learning for node classification. In: Machine Learning and Knowledge Discovery in Databases: European Conference, ECML PKDD 2022, Grenoble, France, 19–23 September 2022, Proceedings, Part I, pp. 55–70. Springer (2023). https://doi.org/10.1007/978-3-031-26387-3_4

  24. Moore, C., Yan, X., Zhu, Y., Rouquier, J.B., Lane, T.: Active learning for node classification in assortative and disassortative networks. In: Proceedings of the 17th ACM SIGKDD international Conference on Knowledge Discovery and Data Mining, pp. 841–849 (2011)

    Google Scholar 

  25. Namata, G.M., London, B., Getoor, L., Huang, B.: Query-driven active surveying for collective classification. In: MLG (2012)

    Google Scholar 

  26. Ogawa, Y., Maekawa, S., Sasaki, Y., Fujiwara, Y., Onizuka, M.: Adaptive node embedding propagation for semi-supervised classification. In: Oliver, N., Pérez-Cruz, F., Kramer, S., Read, J., Lozano, J.A. (eds.) ECML PKDD 2021. LNCS (LNAI), vol. 12976, pp. 417–433. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-86520-7_26

    Chapter  Google Scholar 

  27. Paszke, A., et al.: Pytorch: an imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., d’Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32, pp. 8024–8035. Curran Associates, Inc. (2019)

    Google Scholar 

  28. Regol, F., Pal, S., Zhang, Y., Coates, M.: Active learning on attributed graphs via graph cognizant logistic regression and preemptive query generation. In: ICML, pp. 8041–8050. PMLR (2020)

    Google Scholar 

  29. Regol, F., Pal, S., Zhang, Y., Coates, M.: Active learning on attributed graphs via graph cognizant logistic regression and preemptive query generation. In: Proceedings of the 37th International Conference on Machine Learning, ICML 2020, JMLR.org (2020)

    Google Scholar 

  30. Sen, P., Namata, G., Bilgic, M., Getoor, L., Galligher, B., Eliassi-Rad, T.: Collective classification in network data. AI Mag. 29(3), 93 (2008)

    Google Scholar 

  31. Sener, O., Savarese, S.: Active learning for convolutional neural networks: a core-set approach. In: ICLR (2018)

    Google Scholar 

  32. Settles, B.: Active learning literature survey. Computer Sciences Technical Report 1648, University of Wisconsin-Madison (2009)

    Google Scholar 

  33. Seung, H.S., Opper, M., Sompolinsky, H.: Query by committee. In: Proceedings of the Fifth Annual Workshop on Computational Learning Theory, COLT 1992, pp. 287–294. Association for Computing Machinery, New York (1992)

    Google Scholar 

  34. Shchur, O., Mumme, M., Bojchevski, A., Günnemann, S.: Pitfalls of graph neural network evaluation. In: NeurIPS Relational Representation Learning Workshop (2018)

    Google Scholar 

  35. Veličković, P., Cucurull, G., Casanova, A., Romero, A., Lio, P., Bengio, Y.: Graph attention networks. In: ICLR (2018)

    Google Scholar 

  36. Veličković, P., Fedus, W., Hamilton, W.L., Lió, P., Bengio, Y., Hjelm, R.D.: Deep graph infomax. In: ICLR (2018)

    Google Scholar 

  37. Wu, Y., Xu, Y., Singh, A., Yang, Y., Dubrawski, A.: Active learning for graph neural networks via node feature propagation. arXiv preprint arXiv:1910.07567 (2019)

  38. Wu, Y., Xu, Y., Singh, A., Yang, Y., Dubrawski, A.: Active learning for graph neural networks via node feature propagation. CoRR abs/ arXiv: 1910.07567 (2019)

  39. Xu, K., Hu, W., Leskovec, J., Jegelka, S.: How powerful are graph neural networks?. In: ICLR (2019)

    Google Scholar 

  40. Xu, K., Li, C., Tian, Y., Sonobe, T., Kawarabayashi, K.i., Jegelka, S.: Representation learning on graphs with jumping knowledge networks. In: ICML, pp. 5453–5462. PMLR (2018)

    Google Scholar 

  41. Zhang, M., Chen, Y.: Link prediction based on graph neural networks. In: Advances in Neural Information Processing Systems 31 (2018)

    Google Scholar 

  42. Zhang, W., Shen, Y., Li, Y., Chen, L., Yang, Z., Cui, B.: Alg: fast and accurate active learning framework for graph convolutional networks. In: SIGMOD, pp. 2366–2374 (2021)

    Google Scholar 

  43. Zhang, W., et al.: Grain: Improving data efficiency of graph neural networks via diversified influence maximization. Proc. VLDB Endow. 14(11), 2473–2482 (2021)

    Article  Google Scholar 

  44. Zhao, L., et al.: T-gcn: a temporal graph convolutional network for traffic prediction. IEEE Trans. Intell. Transp. Syst. 21(9), 3848–3858 (2019)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sandra Gilhuber .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gilhuber, S., Busch, J., Rotthues, D., Frey, C.M.M., Seidl, T. (2023). DiffusAL: Coupling Active Learning with Graph Diffusion for Label-Efficient Node Classification. In: Koutra, D., Plant, C., Gomez Rodriguez, M., Baralis, E., Bonchi, F. (eds) Machine Learning and Knowledge Discovery in Databases: Research Track. ECML PKDD 2023. Lecture Notes in Computer Science(), vol 14169. Springer, Cham. https://doi.org/10.1007/978-3-031-43412-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-43412-9_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-43411-2

  • Online ISBN: 978-3-031-43412-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics