Skip to main content

How to Overcome Confirmation Bias in Semi-Supervised Image Classification by Active Learning

  • Conference paper
  • First Online:
Machine Learning and Knowledge Discovery in Databases: Research Track (ECML PKDD 2023)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 14170))

  • 1459 Accesses

Abstract

Do we need active learning? The rise of strong deep semi-supervised methods raises doubt about the usability of active learning in limited labeled data settings. This is caused by results showing that combining semi-supervised learning (SSL) methods with a random selection for labeling can outperform existing active learning (AL) techniques. However, these results are obtained from experiments on well-established benchmark datasets that can overestimate the external validity. However, the literature lacks sufficient research on the performance of active semi-supervised learning methods in realistic data scenarios, leaving a notable gap in our understanding. Therefore we present three data challenges common in real-world applications: between-class imbalance, within-class imbalance, and between-class similarity. These challenges can hurt SSL performance due to confirmation bias. We conduct experiments with SSL and AL on simulated data challenges and find that random sampling does not mitigate confirmation bias and, in some cases, leads to worse performance than supervised learning. In contrast, we demonstrate that AL can overcome confirmation bias in SSL in these realistic settings. Our results provide insights into the potential of combining active and semi-supervised learning in the presence of common real-world challenges, which is a promising direction for robust methods when learning with limited labeled data in real-world applications.

S. Gilhuber and R. Hvingelby—Equal contribution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    ACL, AAAI, CVPR, ECCV, ECML PKDD, EMNLP, ICCV, ICDM, ICLR, ICML, IJCAI, KDD, and NeurIPS.

  2. 2.

    We consider benchmark datasets as the well-established MNIST, CIFAR10/100, SVHN, FashionMNIST, STL-10, ImageNet (and Tiny-ImageNet), as well as Caltech-101 and Caltech-256.

  3. 3.

    See also https://github.com/lmu-dbs/HOCOBIS-AL.

References

  1. Aggarwal, U., Popescu, A., Hudelot, C.: Active learning for imbalanced datasets. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, pp. 1428–1437 (2020)

    Google Scholar 

  2. Algan, G., Ulusoy, I.: Image classification with deep learning in the presence of noisy labels: A survey. Knowl.-Based Syst. 215, 106771 (2021)

    Article  Google Scholar 

  3. Arazo, E., Ortego, D., Albert, P., O’Connor, N.E., McGuinness, K.: Pseudo-labeling and confirmation bias in deep semi-supervised learning. In: 2020 International Joint Conference on Neural Networks (IJCNN), pp. 1–8 (2020). https://doi.org/10.1109/IJCNN48605.2020.9207304

  4. Ash, J.T., Zhang, C., Krishnamurthy, A., Langford, J., Agarwal, A.: Deep batch active learning by diverse, uncertain gradient lower bounds. In: 8th International Conference on Learning Representations, ICLR 2020, Addis Ababa, Ethiopia, 26–30 April 2020. OpenReview.net (2020). https://openreview.net/forum?id=ryghZJBKPS

  5. Beck, N., Sivasubramanian, D., Dani, A., Ramakrishnan, G., Iyer, R.: Effective evaluation of deep active learning on image classification tasks. arXiv preprint arXiv:2106.15324 (2021)

  6. Bengar, J.Z., van de Weijer, J., Fuentes, L.L., Raducanu, B.: Class-balanced active learning for image classification. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, pp. 1536–1545 (2022)

    Google Scholar 

  7. Bengar, J.Z., van de Weijer, J., Twardowski, B., Raducanu, B.: Reducing label effort: self-supervised meets active learning. In: 2021 IEEE/CVF International Conference on Computer Vision Workshops (ICCVW), pp. 1631–1639. IEEE Computer Society, Los Alamitos (2021). https://doi.org/10.1109/ICCVW54120.2021.00188. https://doi.ieeecomputersociety.org/10.1109/ICCVW54120.2021.00188

  8. Berthelot, D., Carlini, N., Goodfellow, I., Papernot, N., Oliver, A., Raffel, C.A.: Mixmatch: a holistic approach to semi-supervised learning. Adv. Neural Inf. Process. Syst. 32, 1–11 (2019)

    Google Scholar 

  9. Birodkar, V., Mobahi, H., Bengio, S.: Semantic redundancies in image-classification datasets: the 10% you don’t need. arXiv preprint arXiv:1901.11409 (2019)

  10. Breunig, M.M., Kriegel, H.P., Ng, R.T., Sander, J.: Lof: identifying density-based local outliers. In: Proceedings of the 2000 ACM SIGMOD International Conference on Management of Data, pp. 93–104 (2000)

    Google Scholar 

  11. Chan, Y.-C., Li, M., Oymak, S.: On the marginal benefit of active learning: Does self-supervision eat its cake? In: ICASSP 2021 - 2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 3455–3459 (2021). https://doi.org/10.1109/ICASSP39728.2021.9414665

  12. Chang, H., Xie, G., Yu, J., Ling, Q., Gao, F., Yu, Y.: A viable framework for semi-supervised learning on realistic dataset. In: Machine Learning, pp. 1–23 (2022)

    Google Scholar 

  13. Chapelle, O., Scholkopf, B., Zien, A.: Semi-supervised learning. IEEE Trans. Neural Netw. 20(3), 542–542 (2009)

    Article  Google Scholar 

  14. Das, S., Datta, S., Chaudhuri, B.B.: Handling data irregularities in classification: foundations, trends, and future challenges. Pattern Recogn. 81, 674–693 (2018)

    Article  Google Scholar 

  15. Donmez, P., Carbonell, J.G., Bennett, P.N.: Dual strategy active learning. In: Kok, J.N., Koronacki, J., Mantaras, R.L., Matwin, S., Mladenič, D., Skowron, A. (eds.) ECML 2007. LNCS (LNAI), vol. 4701, pp. 116–127. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74958-5_14

    Chapter  Google Scholar 

  16. Ertekin, S., Huang, J., Bottou, L., Giles, L.: Learning on the border: active learning in imbalanced data classification. In: Proceedings of the Sixteenth ACM Conference on Information and Knowledge Management, pp. 127–136 (2007)

    Google Scholar 

  17. Fu, B., Cao, Z., Wang, J., Long, M.: Transferable query selection for active domain adaptation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 7272–7281 (2021)

    Google Scholar 

  18. Gal, Y., Islam, R., Ghahramani, Z.: Deep bayesian active learning with image data. In: International Conference on Machine Learning, pp. 1183–1192. PMLR (2017)

    Google Scholar 

  19. Gilhuber, S., Berrendorf, M., Ma, Y., Seidl, T.: Accelerating diversity sampling for deep active learning by low-dimensional representations. In: Kottke, D., Krempl, G., Holzinger, A., Hammer, B. (eds.) Proceedings of the Workshop on Interactive Adaptive Learning co-located with European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases (ECML PKDD 2022), Grenoble, France, 23 September 2022. CEUR Workshop Proceedings, vol. 3259, pp. 43–48. CEUR-WS.org (2022). https://ceur-ws.org/Vol-3259/ialatecml_paper4.pdf

  20. Huang, L., Lin, K.C.J., Tseng, Y.C.: Resolving intra-class imbalance for gan-based image augmentation. In: 2019 IEEE International Conference on Multimedia and Expo (ICME), pp. 970–975 (2019). https://doi.org/10.1109/ICME.2019.00171

  21. Hyun, M., Jeong, J., Kwak, N.: Class-imbalanced semi-supervised learning. arXiv preprint arXiv:2002.06815 (2020)

  22. Japkowicz, N.: Concept-learning in the presence of between-class and within-class imbalances. In: Stroulia, E., Matwin, S. (eds.) AI 2001. LNCS (LNAI), vol. 2056, pp. 67–77. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45153-6_7

    Chapter  MATH  Google Scholar 

  23. Kirsch, A., Van Amersfoort, J., Gal, Y.: Batchbald: efficient and diverse batch acquisition for deep bayesian active learning. Adv. Neural Inf. Process. Syst. 32, 1–12 (2019)

    Google Scholar 

  24. LeCun, Y., et al.: Backpropagation applied to handwritten zip code recognition. Neural Comput. 1(4), 541–551 (1989)

    Article  Google Scholar 

  25. Lee, D.H., et al.: Pseudo-label: the simple and efficient semi-supervised learning method for deep neural networks. In: Workshop on Challenges in Representation Learning, ICML, vol. 3, p. 896 (2013)

    Google Scholar 

  26. Lee, H., Park, M., Kim, J.: Plankton classification on imbalanced large scale database via convolutional neural networks with transfer learning. In: 2016 IEEE International Conference on Image Processing (ICIP), pp. 3713–3717 (2016). https://doi.org/10.1109/ICIP.2016.7533053

  27. Li, J., et al.: Learning from large-scale noisy web data with ubiquitous reweighting for image classification. IEEE Trans. Pattern Anal. Mach. Intell. 43(5), 1808–1814 (2019)

    Article  Google Scholar 

  28. Li, J., Socher, R., Hoi, S.C.: Dividemix: learning with noisy labels as semi-supervised learning. In: International Conference on Learning Representations (2020). https://openreview.net/forum?id=HJgExaVtwr

  29. Liao, T., Taori, R., Raji, I.D., Schmidt, L.: Are we learning yet? a meta review of evaluation failures across machine learning. In: Thirty-fifth Conference on Neural Information Processing Systems Datasets and Benchmarks Track (Round 2) (2021). https://openreview.net/forum?id=mPducS1MsEK

  30. López, V., Fernández, A., García, S., Palade, V., Herrera, F.: An insight into classification with imbalanced data: empirical results and current trends on using data intrinsic characteristics. Inf. Sci. 250, 113–141 (2013)

    Article  Google Scholar 

  31. Lowell, D., Lipton, Z.C., Wallace, B.C.: Practical obstacles to deploying active learning. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 21–30 (2019)

    Google Scholar 

  32. Lüth, C.T., Bungert, T.J., Klein, L., Jaeger, P.F.: Toward realistic evaluation of deep active learning algorithms in image classification (2023)

    Google Scholar 

  33. Mittal, S., Tatarchenko, M., Çiçek, Ö., Brox, T.: Parting with illusions about deep active learning. ArXiv abs/1912.05361 (2019)

    Google Scholar 

  34. Mukhoti, J., Kirsch, A., van Amersfoort, J., Torr, P.H.S., Gal, Y.: Deep deterministic uncertainty: A new simple baseline. In: 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 24384–24394 (2023). https://doi.org/10.1109/CVPR52729.2023.02336

  35. Oliver, A., Odena, A., Raffel, C.A., Cubuk, E.D., Goodfellow, I.: Realistic evaluation of deep semi-supervised learning algorithms. In: Bengio, S., Wallach, H., Larochelle, H., Grauman, K., Cesa-Bianchi, N., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 31. Curran Associates, Inc. (2018). https://proceedings.neurips.cc/paper_files/paper/2018/file/c1fea270c48e8079d8ddf7d06d26ab52-Paper.pdf

  36. Plank, B.: The “problem” of human label variation: On ground truth in data, modeling and evaluation. In: Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Abu Dhabi (2022)

    Google Scholar 

  37. Prabhu, V., Chandrasekaran, A., Saenko, K., Hoffman, J.: Active domain adaptation via clustering uncertainty-weighted embeddings. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 8505–8514 (2021)

    Google Scholar 

  38. Ren, P., et al.: A survey of deep active learning. ACM Comput. Surv. (CSUR) 54(9), 1–40 (2021)

    Article  Google Scholar 

  39. Sener, O., Savarese, S.: Active learning for convolutional neural networks: a core-set approach. In: International Conference on Learning Representations (2018)

    Google Scholar 

  40. Settles, B.: Active learning literature survey (2009)

    Google Scholar 

  41. Sohn, K., et al.: FixMatch: simplifying semi-supervised learning with consistency and confidence. In: Advances in Neural Information Processing Systems (2020)

    Google Scholar 

  42. Stefanowski, J.: Dealing with data difficulty factors while learning from imbalanced data. In: Matwin, S., Mielniczuk, J. (eds.) Challenges in Computational Statistics and Data Mining. SCI, vol. 605, pp. 333–363. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-18781-5_17

    Chapter  Google Scholar 

  43. Su, L., Liu, Y., Wang, M., Li, A.: Semi-hic: a novel semi-supervised deep learning method for histopathological image classification. Comput. Biol. Med. 137, 104788 (2021)

    Article  Google Scholar 

  44. Van Engelen, J.E., Hoos, H.H.: A survey on semi-supervised learning. Mach. Learn. 109(2), 373–440 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  45. Varoquaux, G., Cheplygina, V.: Machine learning for medical imaging: methodological failures and recommendations for the future. NPJ Dig. Med. 5(1), 1–8 (2022)

    Google Scholar 

  46. Venkataramanan, A., Laviale, M., Figus, C., Usseglio-Polatera, P., Pradalier, C.: Tackling inter-class similarity and intra-class variance for microscopic image-based classification. In: Vincze, M., Patten, T., Christensen, H.I., Nalpantidis, L., Liu, M. (eds.) ICVS 2021. LNCS, vol. 12899, pp. 93–103. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87156-7_8

    Chapter  Google Scholar 

  47. Wang, M., Min, F., Zhang, Z.H., Wu, Y.X.: Active learning through density clustering. Expert Syst. Appl. 85, 305–317 (2017)

    Article  Google Scholar 

  48. Wang, Q.: Wgan-based synthetic minority over-sampling technique: improving semantic fine-grained classification for lung nodules in ct images. IEEE Access 7, 18450–18463 (2019). https://doi.org/10.1109/ACCESS.2019.2896409

    Article  Google Scholar 

  49. Wang, Y., et al.: Usb: a unified semi-supervised learning benchmark for classification. In: Thirty-sixth Conference on Neural Information Processing Systems Datasets and Benchmarks Track (2022). https://doi.org/10.48550/ARXIV.2208.07204. https://arxiv.org/abs/2208.07204

  50. Wojciechowski, S., Wilk, S.: Difficulty factors and preprocessing in imbalanced data sets: an experimental study on artificial data. Found. Comput. Decis. Sci. 42(2), 149–176 (2017). https://doi.org/10.1515/fcds-2017-0007

    Article  MATH  Google Scholar 

  51. Wu, M., Li, C., Yao, Z.: Deep active learning for computer vision tasks: methodologies, applications, and challenges. Appl. Sci. 12(16), 8103 (2022)

    Article  Google Scholar 

  52. Xie, B., Yuan, L., Li, S., Liu, C.H., Cheng, X.: Towards fewer annotations: active learning via region impurity and prediction uncertainty for domain adaptive semantic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8068–8078 (2022)

    Google Scholar 

  53. Zhan, X., Wang, Q., Huang, K.H., Xiong, H., Dou, D., Chan, A.B.: A comparative survey of deep active learning. arXiv preprint arXiv:2203.13450 (2022)

  54. Zhang, B., et al.: Flexmatch: boosting semi-supervised learning with curriculum pseudo labeling. Adv. Neural Inf. Process. Syst. 34, 18408–18419 (2021)

    Google Scholar 

  55. Zhdanov, F.: Diverse mini-batch active learning. arXiv preprint arXiv:1901.05954 (2019)

Download references

Acknowledgements

This work was supported by the Bavarian Ministry of Economic Affairs, Regional Development and Energy through the Center for Analytics – Data – Applications (ADA-Center) within the framework of BAYERN DIGITAL II (20-3410-2-9-8) as well as the German Federal Ministry of Education and Research (BMBF) under Grant No. 01IS18036A.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sandra Gilhuber .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gilhuber, S., Hvingelby, R., Fok, M.L.A., Seidl, T. (2023). How to Overcome Confirmation Bias in Semi-Supervised Image Classification by Active Learning. In: Koutra, D., Plant, C., Gomez Rodriguez, M., Baralis, E., Bonchi, F. (eds) Machine Learning and Knowledge Discovery in Databases: Research Track. ECML PKDD 2023. Lecture Notes in Computer Science(), vol 14170. Springer, Cham. https://doi.org/10.1007/978-3-031-43415-0_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-43415-0_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-43414-3

  • Online ISBN: 978-3-031-43415-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics