Skip to main content

Efficient Fine-Tuning Large Language Models for Knowledge-Aware Response Planning

  • Conference paper
  • First Online:
Machine Learning and Knowledge Discovery in Databases: Research Track (ECML PKDD 2023)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 14170))

Abstract

Large Language Models (LLMs) have shown impressive emergent language capabilities, especially in applications with high ambiguity, such as language reasoning and knowledge consolidation. However, previous work explores the use of LLMs for acquiring information using either parametric or external knowledge, which might lead to serious issues such as hallucination. Toward solving these issues, we present a novel approach of knowledge-aware response planning (KARP) and propose a novel framework that employs (i) a knowledge retriever to obtain relevant information from web documents or databases for a given user query, and (ii) a robust fine-tuning strategy for LLMs to exploit the retrieved external knowledge for planning a final response. Experimental results show that our proposed framework can provide natural, concise answers for open-domain questions with high accuracy.

M. Nguyen—This work was completed while the author was an intern at Amazon Alexa AI.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://chat.openai.com/chat.

  2. 2.

    All answers a in MS MARCO QA NLG are written by human annotators based on summarizing answer information in context passages c.

  3. 3.

    Before performing the alignment, we remove stopwords and punctuation marks from both sets of words.

References

  1. Bai, Y., et al.: Training a helpful and harmless assistant with reinforcement learning from human feedback. arXiv preprint arXiv:2204.05862 (2022)

  2. Bao, J., Duan, N., Yan, Z., Zhou, M., Zhao, T.: Constraint-based question answering with knowledge graph. In: Proceedings of COLING 2016, the 26th International Conference on Computational Linguistics: Technical Papers, pp. 2503–2514 (2016)

    Google Scholar 

  3. Bao, J., Duan, N., Zhou, M., Zhao, T.: Knowledge-based question answering as machine translation. In: Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 967–976 (2014)

    Google Scholar 

  4. Bird, S., Klein, E., Loper, E.: Natural Language Processing with Python: Analyzing Text with the Natural Language Toolkit. O’Reilly Media, Inc. (2009)

    Google Scholar 

  5. Callison-Burch, C., Osborne, M., Koehn, P.: Re-evaluating the role of Bleu in machine translation research. In: 11th Conference of the European Chapter of the Association for Computational Linguistics, pp. 249–256. Association for Computational Linguistics, Trento (April 2006)

    Google Scholar 

  6. Chen, D., Fisch, A., Weston, J., Bordes, A.: Reading wikipedia to answer open-domain questions. arXiv preprint arXiv:1704.00051 (2017)

  7. Chen, D., Yih, W.T.: Open-domain question answering. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics: Tutorial Abstracts, pp. 34–37 (2020)

    Google Scholar 

  8. Clark, P., et al.: Combining retrieval, statistics, and inference to answer elementary science questions. Proc. AAAI Conf. Artif. Intell. 30(1) (2016). https://doi.org/10.1609/aaai.v30i1.10325

  9. Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. Adv. Neural Inf. Process. Syst. 26 (2013)

    Google Scholar 

  10. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis (2019). https://doi.org/10.18653/v1/N19-1423

  11. FitzGerald, J.G.M., et al.: Alexa teacher model: pretraining and distilling multi-billion-parameter encoders for natural language understanding systems. In: KDD 2022 (2022)

    Google Scholar 

  12. Gabburo, M., Koncel-Kedziorski, R., Garg, S., Soldaini, L., Moschitti, A.: Knowledge transfer from answer ranking to answer generation. In: Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing. pp. 9481–9495. Association for Computational Linguistics, Abu Dhabi (2022)

    Google Scholar 

  13. Garg, S., Vu, T., Moschitti, A.: Tanda: Transfer and adapt pre-trained transformer models for answer sentence selection. Proc. AAAI Conf. Artif. Intell. 34(05), 7780–7788 (2020). https://doi.org/10.1609/aaai.v34i05.6282

  14. Gururangan, S., et al.: Don’t stop pretraining: adapt language models to domains and tasks. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. pp. 8342–8360. Association for Computational Linguistics (2020). https://doi.org/10.18653/v1/2020.acl-main.740

  15. Hermann, K.M., et al.: Teaching machines to read and comprehend. Adv. Neural Inf. Process. Syst. 28 (2015)

    Google Scholar 

  16. Howard, J., Ruder, S.: Universal language model fine-tuning for text classification. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 328–339. Association for Computational Linguistics, Melbourne (2018). https://doi.org/10.18653/v1/P18-1031

  17. Hsu, C.C., Lind, E., Soldaini, L., Moschitti, A.: Answer generation for retrieval-based question answering systems. In: Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021, pp. 4276–4282. Association for Computational Linguistics (2021). https://doi.org/10.18653/v1/2021.findings-acl.374

  18. Izacard, G., Grave, E.: Leveraging passage retrieval with generative models for open domain question answering. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp. 874–880. Association for Computational Linguistics (2021). https://doi.org/10.18653/v1/2021.eacl-main.74

  19. Ji, Z., et al.: Survey of hallucination in natural language generation. ACM Comput. Surv. 55(12) (2023). https://doi.org/10.1145/3571730

  20. Jiang, Z., Araki, J., Ding, H., Neubig, G.: Understanding and improving zero-shot multi-hop reasoning in generative question answering. In: Proceedings of the 29th International Conference on Computational Linguistics, pp. 1765–1775. International Committee on Computational Linguistics, Gyeongju (Oct 2022)

    Google Scholar 

  21. Kaplan, J., et al.: Scaling laws for neural language models. arXiv preprint arXiv:2001.08361 (2020)

  22. Karpukhin, V., et al.: Dense passage retrieval for open-domain question answering. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 6769–6781. Association for Computational Linguistics (2020). https://doi.org/10.18653/v1/2020.emnlp-main.550

  23. Khashabi, D., et al.: UNIFIEDQA: crossing format boundaries with a single QA system. In: Findings of the Association for Computational Linguistics: EMNLP 2020, pp. 1896–1907. Association for Computational Linguistics (2020). https://doi.org/10.18653/v1/2020.findings-emnlp.171

  24. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations (2017)

    Google Scholar 

  25. Lauriola, I., Moschitti, A.: Answer sentence selection using local and global context in transformer models. In: Hiemstra, D., Moens, M.-F., Mothe, J., Perego, R., Potthast, M., Sebastiani, F. (eds.) ECIR 2021. LNCS, vol. 12656, pp. 298–312. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-72113-8_20

  26. Lewis, M., Fan, A.: Generative question answering: learning to answer the whole question. In: International Conference on Learning Representations (2019)

    Google Scholar 

  27. Lewis, M., et al.: BART: denoising sequence-to-sequence pre-training for natural language generation, translation, and comprehension. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 7871–7880. Association for Computational Linguistics (2020). https://doi.org/10.18653/v1/2020.acl-main.703

  28. Lin, B., et al.: Dependency parsing via sequence generation. In: Findings of the Association for Computational Linguistics: EMNLP 2022, pp. 7339–7353. Association for Computational Linguistics, Abu Dhabi (Dec 2022)

    Google Scholar 

  29. Lin, C.Y.: ROUGE: a package for automatic evaluation of summaries. In: Text Summarization Branches Out, pp. 74–81. Association for Computational Linguistics, Barcelona (July 2004)

    Google Scholar 

  30. Liu, J., Chen, Y., Liu, K., Bi, W., Liu, X.: Event extraction as machine reading comprehension. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 1641–1651. Association for Computational Linguistics (2020). https://doi.org/10.18653/v1/2020.emnlp-main.128

  31. Liu, X., He, P., Chen, W., Gao, J.: Multi-task deep neural networks for natural language understanding. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 4487–4496. Association for Computational Linguistics, Florence (2019). https://doi.org/10.18653/v1/P19-1441

  32. Liu, Y., et al.: Roberta: a robustly optimized bert pretraining approach. arXiv preprint arXiv:1907.11692 (2019)

  33. Lu, Y., et al.: Text2Event: controllable sequence-to-structure generation for end-to-end event extraction. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 2795–2806. Association for Computational Linguistics (2021). https://doi.org/10.18653/v1/2021.acl-long.217

  34. Maynez, J., Narayan, S., Bohnet, B., McDonald, R.: On faithfulness and factuality in abstractive summarization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 1906–1919. Association for Computational Linguistics (2020). https://doi.org/10.18653/v1/2020.acl-main.173

  35. Monge, G.: Mémoire sur la théorie des déblais et des remblais. Mem. Math. Phys. Acad. Royale Sci. 666–704 (1781)

    Google Scholar 

  36. Muller, B., Soldaini, L., Koncel-Kedziorski, R., Lind, E., Moschitti, A.: Cross-lingual open-domain question answering with answer sentence generation. In: Proceedings of the 2nd Conference of the Asia-Pacific Chapter of the Association for Computational Linguistics and the 12th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 337–353. Association for Computational Linguistics (2022)

    Google Scholar 

  37. Nakano, R., et al.: Webgpt: browser-assisted question-answering with human feedback. arXiv preprint arXiv:2112.09332 (2021)

  38. Nguyen, T., et al.: Ms marco: a human generated machine reading comprehension dataset (Nov 2016)

    Google Scholar 

  39. Papineni, K., Roukos, S., Ward, T., Zhu, W.J.: Bleu: a method for automatic evaluation of machine translation. In: Proceedings of the 40th Annual Meeting of the Association for Computational Linguistics, pp. 311–318. Association for Computational Linguistics, Philadelphia (2002). https://doi.org/10.3115/1073083.1073135

  40. Radford, A., Narasimhan, K., Salimans, T., Sutskever, I., et al.: Improving language understanding by generative pre-training (2018)

    Google Scholar 

  41. Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., Sutskever, I.: Language models are unsupervised multitask learners (2019)

    Google Scholar 

  42. Raffel, C., et al.: Exploring the limits of transfer learning with a unified text-to-text transformer. J. Mach. Learn. Res. 21(1) (2020)

    Google Scholar 

  43. Rajpurkar, P., Zhang, J., Lopyrev, K., Liang, P.: SQuAD: 100,000+ questions for machine comprehension of text. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2383–2392. Association for Computational Linguistics, Austin (2016). https://doi.org/10.18653/v1/D16-1264

  44. Raunak, V., Menezes, A., Junczys-Dowmunt, M.: The curious case of hallucinations in neural machine translation. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp. 1172–1183. Association for Computational Linguistics (2021). https://doi.org/10.18653/v1/2021.naacl-main.92

  45. Rebuffel, C., Roberti, M., Soulier, L., Scoutheeten, G., Cancelliere, R., Gallinari, P.: Controlling hallucinations at word level in data-to-text generation. arXiv preprint arXiv:2102.02810 (2021)

  46. Richardson, M., Burges, C.J., Renshaw, E.: MCTest: a challenge dataset for the open-domain machine comprehension of text. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing, pp. 193–203. Association for Computational Linguistics, Seattle (Oct 2013)

    Google Scholar 

  47. Roberts, A., Raffel, C., Shazeer, N.: How much knowledge can you pack into the parameters of a language model? In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 5418–5426. Association for Computational Linguistics (2020). https://doi.org/10.18653/v1/2020.emnlp-main.437

  48. Roller, S., et al.: Recipes for building an open-domain chatbot. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp. 300–325. Association for Computational Linguistics (2021). https://doi.org/10.18653/v1/2021.eacl-main.24

  49. Saxena, A., Chakrabarti, S., Talukdar, P.: Question answering over temporal knowledge graphs. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 6663–6676. Association for Computational Linguistics (2021). https://doi.org/10.18653/v1/2021.acl-long.520

  50. Severyn, A., Moschitti, A.: Learning to rank short text pairs with convolutional deep neural networks. In: Proceedings of the 38th International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 373–382 (2015)

    Google Scholar 

  51. Shuster, K., Poff, S., Chen, M., Kiela, D., Weston, J.: Retrieval augmentation reduces hallucination in conversation. In: Findings of the Association for Computational Linguistics: EMNLP 2021, pp. 3784–3803. Association for Computational Linguistics, Punta Cana (2021). https://doi.org/10.18653/v1/2021.findings-emnlp.320

  52. Sinkhorn, R., Knopp, P.: Concerning nonnegative matrices and doubly stochastic matrices. Pacific J. Math. 21(2), 343–348 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  53. Soltan, S., et al.: Alexatm 20b: few-shot learning using a large-scale multilingual seq2seq model. arXiv (2022)

    Google Scholar 

  54. Vaswani, A., et al.: Attention is all you need. In: Guyon, I., et al. (eds.) Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. (2017)

    Google Scholar 

  55. Wang, C., Sennrich, R.: On exposure bias, hallucination and domain shift in neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3544–3552. Association for Computational Linguistics (2020). https://doi.org/10.18653/v1/2020.acl-main.326

  56. Wang, W., Yang, N., Wei, F., Chang, B., Zhou, M.: Gated self-matching networks for reading comprehension and question answering. In: Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 189–198 (2017)

    Google Scholar 

  57. Wang, Y., et al.: Super-NaturalInstructions: generalization via declarative instructions on 1600+ NLP tasks. In: Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing, pp. 5085–5109. Association for Computational Linguistics, Abu Dhabi (Dec 2022)

    Google Scholar 

  58. Wei, J., et al.: Emergent abilities of large language models. Trans. Mach. Learn. Res. (2022). Survey Certification

    Google Scholar 

  59. Weston, J., et al.: Towards ai-complete question answering: a set of prerequisite toy tasks. arXiv preprint arXiv:1502.05698 (2015)

  60. Wiseman, S., Rush, A.M.: Sequence-to-sequence learning as beam-search optimization. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 1296–1306. Association for Computational Linguistics, Austin (2016). https://doi.org/10.18653/v1/D16-1137

  61. Xiao, Y., Wang, W.Y.: On hallucination and predictive uncertainty in conditional language generation. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp. 2734–2744. Association for Computational Linguistics (2021). https://doi.org/10.18653/v1/2021.eacl-main.236

  62. Xu, J., et al.: Asking clarification questions in knowledge-based question answering. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 1618–1629 (2019)

    Google Scholar 

  63. Yan, H., Gui, T., Dai, J., Guo, Q., Zhang, Z., Qiu, X.: A unified generative framework for various NER subtasks. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 5808–5822. Association for Computational Linguistics (2021). https://doi.org/10.18653/v1/2021.acl-long.451

  64. Yang, W., et al.: End-to-end open-domain question answering with BERTserini. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics (Demonstrations), pp. 72–77. Association for Computational Linguistics, Minneapolis (2019). https://doi.org/10.18653/v1/N19-4013

  65. Yang, Y., Yih, W.T., Meek, C.: Wikiqa: a challenge dataset for open-domain question answering. In: Proceedings of the 2015 Conference on Empirical Methods in Natural Language Pocessing, pp. 2013–2018 (2015)

    Google Scholar 

  66. Yoon, S., Dernoncourt, F., Kim, D.S., Bui, T., Jung, K.: A compare-aggregate model with latent clustering for answer selection. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, pp. 2093–2096 (2019)

    Google Scholar 

  67. Zhang, J., Zhao, Y., Saleh, M., Liu, P.: PEGASUS: pre-training with extracted gap-sentences for abstractive summarization. In: III H.D., Singh A. (eds.) Proceedings of the 37th International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 119, pp. 11328–11339. PMLR (2020)

    Google Scholar 

  68. Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: Bertscore: evaluating text generation with bert. In: International Conference on Learning Representations (2020)

    Google Scholar 

  69. Zhang, Z., Vu, T., Gandhi, S., Chadha, A., Moschitti, A.: Wdrass: a web-scale dataset for document retrieval and answer sentence selection. In: Proceedings of the 31st ACM International Conference on Information & Knowledge Management, pp. 4707–4711 (2022)

    Google Scholar 

  70. Zhao, Z., Cohen, S.B., Webber, B.: Reducing quantity hallucinations in abstractive summarization. In: Findings of the Association for Computational Linguistics: EMNLP 2020, pp. 2237–2249. Association for Computational Linguistics (2020). https://doi.org/10.18653/v1/2020.findings-emnlp.203

  71. Zhou, C., et al.: Detecting hallucinated content in conditional neural sequence generation. In: Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021, pp. 1393–1404. Association for Computational Linguistics (2021). https://doi.org/10.18653/v1/2021.findings-acl.120

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thuy Vu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Nguyen, M., Kishan, K.C., Nguyen, T., Chadha, A., Vu, T. (2023). Efficient Fine-Tuning Large Language Models for Knowledge-Aware Response Planning. In: Koutra, D., Plant, C., Gomez Rodriguez, M., Baralis, E., Bonchi, F. (eds) Machine Learning and Knowledge Discovery in Databases: Research Track. ECML PKDD 2023. Lecture Notes in Computer Science(), vol 14170. Springer, Cham. https://doi.org/10.1007/978-3-031-43415-0_35

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-43415-0_35

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-43414-3

  • Online ISBN: 978-3-031-43415-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics