Skip to main content

ARConvL: Adaptive Region-Based Convolutional Learning for Multi-class Imbalance Classification

  • Conference paper
  • First Online:
Machine Learning and Knowledge Discovery in Databases: Research Track (ECML PKDD 2023)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 14170))

  • 926 Accesses

Abstract

Real-world image classification usually suffers from the multi-class imbalance issue, probably causing unsatisfactory performance, especially on minority classes. A typical way to address such problem is to adjust the loss function of deep networks by making use of class imbalance ratios. However, such static between-class imbalance ratios cannot monitor the changing latent feature distributions that are continuously learned by the deep network throughout training epochs, potentially failing in helping the loss function adapt to the latest class imbalance status of the current training epoch. To address this issue, we propose an adaptive loss to monitor the evolving learning of latent feature distributions. Specifically, the class-wise feature distribution is derived based on the region loss with the objective of accommodating feature points of this class. The multi-class imbalance issue can then be addressed based on the derived class regions from two perspectives: first, an adaptive distribution loss is proposed to optimize class-wise latent feature distributions where different classes would converge within the regions of a similar size, directly tackling the multi-class imbalance problem; second, an adaptive margin is proposed to incorporate with the cross-entropy loss to enlarge the between-class discrimination, further alleviating the class imbalance issue. An adaptive region-based convolutional learning method is ultimately produced based on the adaptive distribution loss and the adaptive margin cross-entropy loss. Experimental results based on public image sets demonstrate the effectiveness and robustness of our approach in dealing with varying levels of multi-class imbalance issues.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In Tensorflow, we can annotate and freeze non-learnable variables using the command get_static_value().

  2. 2.

    Code and supplementary material: https://github.com/shuxian-li/ARConvL.

References

  1. Alejo, R., Sotoca, J.M., Valdovinos, R.M., Casañ, G.A.: The multi-class imbalance problem: cost functions with modular and non-modular neural networks. In: International Symposium on Neural Networks, pp. 421–431. Springer (2009). https://doi.org/10.1007/978-3-642-01216-7_44

  2. Buda, M., Maki, A., Mazurowski, M.A.: A systematic study of the class imbalance problem in convolutional neural networks. Neural Netw. 106, 249–259 (2018)

    Article  Google Scholar 

  3. Cao, K., Wei, C., Gaidon, A., Arechiga, N., Ma, T.: Learning imbalanced datasets with label-distribution-aware margin loss. Proceedings of the 33rd International Conference on Neural Information Processing Systems, pp. 1567–1578 (2019)

    Google Scholar 

  4. Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: SMOTE: synthetic minority over-sampling technique. J. Artifi. Intell. Res. 16(1), 321–357 (2002)

    Article  MATH  Google Scholar 

  5. Chawla, N.V., Lazarevic, A., Hall, L.O., Bowyer, K.W.: SMOTEBoost: improving prediction of the minority class in boosting. In: Lavrač, N., Gamberger, D., Todorovski, L., Blockeel, H. (eds.) PKDD 2003. LNCS (LNAI), vol. 2838, pp. 107–119. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-39804-2_12

    Chapter  Google Scholar 

  6. Cui, Y., Jia, M., Lin, T.Y., Song, Y., Belongie, S.: Class-balanced loss based on effective number of samples. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9268–9277 (2019)

    Google Scholar 

  7. Demšar, J.: Statistical comparisons of classifiers over multiple data sets. J. Mach. Learn. Res. 7, 1–30 (2006)

    MathSciNet  MATH  Google Scholar 

  8. Deng, L.: The mnist database of handwritten digit images for machine learning research. IEEE Signal Process. Mag. 29(6), 141–142 (2012)

    Article  Google Scholar 

  9. Elkan, C.: The foundations of cost-sensitive learning. In: International Joint Conference on Artificial Intelligence, vol. 17, pp. 973–978 (2001)

    Google Scholar 

  10. Freund, Y., Schapire, R.E.: A desicion-theoretic generalization of on-line learning and an application to boosting. In: Vitányi, P. (ed.) EuroCOLT 1995. LNCS, vol. 904, pp. 23–37. Springer, Heidelberg (1995). https://doi.org/10.1007/3-540-59119-2_166

    Chapter  Google Scholar 

  11. Hayat, M., Khan, S., Zamir, S.W., Shen, J., Shao, L.: Gaussian affinity for max-margin class imbalanced learning. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 6469–6479 (2019)

    Google Scholar 

  12. He, H., Bai, Y., Garcia, E.A., Li, S.: ADASYN: adaptive synthetic sampling approach for imbalanced learning. In: IEEE International Joint Conference on Neural Networks (IEEE World Congress on Computational Intelligence), pp. 1322–1328. IEEE (2008)

    Google Scholar 

  13. He, H., Garcia, E.A.: Learning from imbalanced data. IEEE Trans. Knowl. Data Eng. 21(9), 1263–1284 (2009)

    Article  Google Scholar 

  14. Holm, S.: A simple sequentially rejective multiple test procedure. Scand. J. Stat. 6(2), 65–70 (1979)

    MathSciNet  MATH  Google Scholar 

  15. Johnson, J.M., Khoshgoftaar, T.M.: Survey on deep learning with class imbalance. J. Big Data 6(1), 1–54 (2019)

    Article  Google Scholar 

  16. Khan, S.H., Hayat, M., Bennamoun, M., Sohel, F.A., Togneri, R.: Cost-sensitive learning of deep feature representations from imbalanced data. IEEE Trans. Neural Netw. Learn. Syst. 29(8), 3573–3587 (2018)

    Article  Google Scholar 

  17. Krizhevsky, A., Hinton, G.: Learning multiple layers of features from tiny images. Tech. Rep. 0, University of Toronto, Toronto, Ontario (2009)

    Google Scholar 

  18. Lee, H., Park, M., Kim, J.: Plankton classification on imbalanced large scale database via convolutional neural networks with transfer learning. In: 2016 IEEE International Conference On Image Processing (ICIP), pp. 3713–3717. IEEE (2016)

    Google Scholar 

  19. Liang, L., Jin, T., Huo, M.: Feature identification from imbalanced data sets for diagnosis of cardiac arrhythmia. In: International Symposium on Computational Intelligence and Design, vol. 02, pp. 52–55. IEEE (2018)

    Google Scholar 

  20. Lin, T.Y., Goyal, P., Girshick, R., He, K., Dollár, P.: Focal loss for dense object detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2980–2988 (2017)

    Google Scholar 

  21. Liu, J., Sun, Y., Han, C., Dou, Z., Li, W.: Deep representation learning on long-tailed data: A learnable embedding augmentation perspective. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2970–2979 (2020)

    Google Scholar 

  22. Liu, Z., Luo, P., Wang, X., Tang, X.: Deep learning face attributes in the wild. In: Proceedings of International Conference on Computer Vision (ICCV) (December 2015)

    Google Scholar 

  23. Menon, A.K., Jayasumana, S., Rawat, A.S., Jain, H., Veit, A., Kumar, S.: Long-tail learning via logit adjustment. In: International Conference on Learning Representations (2021)

    Google Scholar 

  24. M’hamed, B.A., Fergani, B.: A new multi-class WSVM classification to imbalanced human activity dataset. J. Comput. 9(7), 1560–1565 (2014)

    Google Scholar 

  25. Mullick, S.S., Datta, S., Das, S.: Generative adversarial minority oversampling. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 1695–1704 (2019)

    Google Scholar 

  26. Netzer, Y., Wang, T., Coates, A., Bissacco, A., Wu, B., Ng, A.Y.: Reading digits in natural images with unsupervised feature learning. In: NIPS Workshop on Deep Learning and Unsupervised Feature Learning (2011)

    Google Scholar 

  27. Pouyanfar, S., Chen, S.C., Shyu, M.L.: Deep spatio-temporal representation learning for multi-class imbalanced data classification. In: International Conference on Information Reuse and Integration, pp. 386–393. IEEE (2018)

    Google Scholar 

  28. Ren, J., Yu, C., Sheng, S., Ma, X., Zhao, H., Yi, S., Li, h.: Balanced meta-softmax for long-tailed visual recognition. In: Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M., Lin, H. (eds.) Advances in Neural Information Processing Systems, vol. 33, pp. 4175–4186. Curran Associates, Inc. (2020)

    Google Scholar 

  29. Seiffert, C., Khoshgoftaar, T.M., Van Hulse, J., Napolitano, A.: RUSBoost: a hybrid approach to alleviating class imbalance. IEEE Trans. Syst. Man Cybern. - Part A: Syst. Hum. 40(1), 185–197 (2010)

    Article  Google Scholar 

  30. Shah, A., Kadam, E., Shah, H., Shinde, S., Shingade, S.: Deep residual networks with exponential linear unit. In: Proceedings of the Third International Symposium on Computer Vision and the Internet, pp. 59–65 (2016)

    Google Scholar 

  31. Sun, Y., Kamel, M.S., Wang, Y.: Boosting for learning multiple classes with imbalanced class distribution. In: International Conference on Data Mining, pp. 592–602. IEEE (2006)

    Google Scholar 

  32. Taherkhani, A., Cosma, G., McGinnity, T.M.: AdaBoost-CNN: an adaptive boosting algorithm for convolutional neural networks to classify multi-class imbalanced datasets using transfer learning. Neurocomputing 404, 351–366 (2020)

    Article  Google Scholar 

  33. Tan, J., et al.: Equalization loss for long-tailed object recognition. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11662–11671 (2020)

    Google Scholar 

  34. Van Horn, G., et al.: The inaturalist species classification and detection dataset. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 8769–8778 (2018)

    Google Scholar 

  35. Wang, S., Chen, H., Yao, X.: Negative correlation learning for classification ensembles. In: International Joint Conference on Neural Networks, pp. 1–8. IEEE (2010)

    Google Scholar 

  36. Wang, S., Yao, X.: Multiclass imbalance problems: analysis and potential solutions. IEEE Trans. Syst. Man Cybern. Part B (Cybern.) 42(4), 1119–1130 (2012)

    Google Scholar 

  37. Wang, X., Lyu, Y., Jing, L.: Deep generative model for robust imbalance classification. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 14124–14133 (2020)

    Google Scholar 

  38. Xiang, L., Ding, G., Han, J.: Learning from multiple experts: self-paced knowledge distillation for long-tailed classification. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12350, pp. 247–263. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58558-7_15

    Chapter  Google Scholar 

  39. Xiao, H., Rasul, K., Vollgraf, R.: Fashion-mnist: a novel image dataset for benchmarking machine learning algorithms. arXiv preprint arXiv:1708.07747 (2017)

  40. Yang, H.M., Zhang, X.Y., Yin, F., Liu, C.L.: Robust classification with convolutional prototype learning. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3474–3482 (2018)

    Google Scholar 

  41. Zhang, Y., Kang, B., Hooi, B., Yan, S., Feng, J.: Deep long-tailed learning: A survey. arXiv preprint arXiv:2110.04596 (2021)

  42. Zhou, B., Cui, Q., Wei, X.S., Chen, Z.M.: BBN: bilateral-branch network with cumulative learning for long-tailed visual recognition. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9719–9728 (2020)

    Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (NSFC) under Grant No. 62002148 and Grant No. 62250710682, Guangdong Provincial Key Laboratory under Grant No. 2020B121201001, the Program for Guangdong Introducing Innovative and Enterpreneurial Teams under Grant No. 2017ZT07X386, and Research Institute of Trustworthy Autonomous Systems (RITAS).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Liyan Song or Xin Yao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Li, S., Song, L., Wu, X., Hu, Z., Cheung, Ym., Yao, X. (2023). ARConvL: Adaptive Region-Based Convolutional Learning for Multi-class Imbalance Classification. In: Koutra, D., Plant, C., Gomez Rodriguez, M., Baralis, E., Bonchi, F. (eds) Machine Learning and Knowledge Discovery in Databases: Research Track. ECML PKDD 2023. Lecture Notes in Computer Science(), vol 14170. Springer, Cham. https://doi.org/10.1007/978-3-031-43415-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-43415-0_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-43414-3

  • Online ISBN: 978-3-031-43415-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics