Skip to main content

Learning to Augment Graph Structure for both Homophily and Heterophily Graphs

  • Conference paper
  • First Online:
Machine Learning and Knowledge Discovery in Databases: Research Track (ECML PKDD 2023)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 14171))

  • 970 Accesses

Abstract

Recent years have witnessed great successes in performing graph structure learning for Graph Neural Networks (GNNs). However, comparatively little work studies structure augmentation for graphs, where the augmented structures are only used for training and are not available during inference. This is mainly due to that structure augmentation is a discrete combinatorial optimization problem rather than a continuous optimization problem like structure learning. In this paper, we propose Learning to Augment (L2A), a novel structure augmentation framework that learns customized augmentation strategies for graphs with different homophily levels. Specifically, L2A simultaneously performs the maximum likelihood estimation of GNN parameters and the learning of optimal structure augmentations in a variational inference framework. Moreover, L2A applies two auxiliary self-supervised tasks to exploit both global position and label distribution information in the graph structure to further reduce the reliance on annotated labels and improve applicability to heterophily graphs. Extensive experiments have shown that L2A can produce truly encouraging results at various homophily levels compared with other leading methods and can learn customized structure augmentation strategies across various GNNs architectures and graph datasets. Codes are available at: https://github.com/LirongWu/L2A.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bo, D., Wang, X., Shi, C., Shen, H.: Beyond low-frequency information in graph convolutional networks. arXiv preprint arXiv:2101.00797 (2021)

  2. Chen, D., Lin, Y., Li, W., Li, P., Zhou, J., Sun, X.: Measuring and relieving the over-smoothing problem for graph neural networks from the topological view. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, pp. 3438–3445 (2020)

    Google Scholar 

  3. Cubuk, E.D., Zoph, B., Mane, D., Vasudevan, V., Le, Q.V.: Autoaugment: learning augmentation strategies from data. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 113–123 (2019)

    Google Scholar 

  4. Defferrard, M., Bresson, X., Vandergheynst, P.: Convolutional neural networks on graphs with fast localized spectral filtering. arXiv preprint arXiv:1606.09375 (2016)

  5. Fadaee, M., Bisazza, A., Monz, C.: Data augmentation for low-resource neural machine translation. arXiv preprint arXiv:1705.00440 (2017)

  6. Giles, C.L., Bollacker, K.D., Lawrence, S.: Citeseer: an automatic citation indexing system. In: Proceedings of the Third ACM Conference on Digital Libraries, pp. 89–98 (1998)

    Google Scholar 

  7. Hamilton, W., Ying, Z., Leskovec, J.: Inductive representation learning on large graphs. In: Advances in Neural Information Processing Systems, pp. 1024–1034 (2017)

    Google Scholar 

  8. Ho, D., Liang, E., Chen, X., Stoica, I., Abbeel, P.: Population based augmentation: efficient learning of augmentation policy schedules. In: International Conference on Machine Learning, pp. 2731–2741. PMLR (2019)

    Google Scholar 

  9. Hu, W., et al.: Strategies for pre-training graph neural networks. arXiv preprint arXiv:1905.12265 (2019)

  10. Huang, X., Li, J., Hu, X.: Label informed attributed network embedding. In: Proceedings of the Tenth ACM International Conference on Web Search and Data Mining, pp. 731–739 (2017)

    Google Scholar 

  11. Jang, E., Gu, S., Poole, B.: Categorical reparameterization with gumbel-softmax. arXiv preprint arXiv:1611.01144 (2016)

  12. Jin, W., et al.: Self-supervised learning on graphs: deep insights and new direction. arXiv preprint arXiv:2006.10141 (2020)

  13. Karypis, G., Kumar, V.: A fast and high quality multilevel scheme for partitioning irregular graphs. SIAM J. Sci. Comput. 20(1), 359–392 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  14. Kingma, D.P., Welling, M.: Auto-encoding variational bayes. arXiv preprint arXiv:1312.6114 (2013)

  15. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:1609.02907 (2016)

  16. Liu, Z., Luo, Y., Wu, L., Li, S., Liu, Z., Li, S.Z.: Are gradients on graph structure reliable in gray-box attacks? In: Proceedings of the 31st ACM International Conference on Information & Knowledge Management, pp. 1360–1368 (2022)

    Google Scholar 

  17. Liu, Z., Luo, Y., Wu, L., Liu, Z., Li, S.Z.: Towards reasonable budget allocation in untargeted graph structure attacks via gradient debias. In: Advances in Neural Information Processing Systems (2022)

    Google Scholar 

  18. Mohamed, S., Rezende, D.J.: Variational information maximisation for intrinsically motivated reinforcement learning. arXiv preprint arXiv:1509.08731 (2015)

  19. Park, H., et al.: Metropolis-hastings data augmentation for graph neural networks. In: Advances in Neural Information Processing Systems, vol. 34 (2021)

    Google Scholar 

  20. Pei, H., Wei, B., Chang, K.C.C., Lei, Y., Yang, B.: Geom-GCN: geometric graph convolutional networks. arXiv preprint arXiv:2002.05287 (2020)

  21. Rong, Y., Huang, W., Xu, T., Huang, J.: Dropedge: towards deep graph convolutional networks on node classification. arXiv preprint arXiv:1907.10903 (2019)

  22. Şahin, G.G., Steedman, M.: Data augmentation via dependency tree morphing for low-resource languages. arXiv preprint arXiv:1903.09460 (2019)

  23. Sen, P., Namata, G., Bilgic, M., Getoor, L., Galligher, B., Eliassi-Rad, T.: Collective classification in network data. AI Mag. 29(3), 93 (2008)

    Google Scholar 

  24. Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.: Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 15(1), 1929–1958 (2014)

    MathSciNet  MATH  Google Scholar 

  25. Tang, J., Sun, J., Wang, C., Yang, Z.: Social influence analysis in large-scale networks. In: Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 807–816 (2009)

    Google Scholar 

  26. Wu, L., et al.: Beyond homophily and homogeneity assumption: relation-based frequency adaptive graph neural networks. IEEE Trans. Neural Netw. Learn. Syst. (2023)

    Google Scholar 

  27. Wu, L., Lin, H., Huang, Y., Fan, T., Li, S.Z.: Extracting low-/high-frequency knowledge from graph neural networks and injecting it into MLPs: an effective GNN-to-MLP distillation framework. arXiv preprint arXiv:2305.10758 (2023)

  28. Wu, L., Lin, H., Huang, Y., Li, S.Z.: Knowledge distillation improves graph structure augmentation for graph neural networks. In: Advances in Neural Information Processing Systems (2022)

    Google Scholar 

  29. Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. (2021)

    Google Scholar 

  30. Wu, L., Xia, J., Gao, Z., Lin, H., Tan, C., Li, S.Z.: Graphmixup: improving class-imbalanced node classification by reinforcement mixup and self-supervised context prediction. In: Amini, M.R., Canu, S., Fischer, A., Guns, T., Kralj Novak, P., Tsoumakas, G. (eds.) PKDD 2022. LNCS, vol. 13716, pp. 519–535. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-26412-2_32

    Chapter  Google Scholar 

  31. Wu, Z., Pan, S., Chen, F., Long, G., Zhang, C., Philip, S.Y.: A comprehensive survey on graph neural networks. IEEE Trans. Neural Netw. Learn. Syst. 32(1), 4–24 (2020)

    Article  MathSciNet  Google Scholar 

  32. Xiao, T., Chen, Z., Wang, D., Wang, S.: Learning how to propagate messages in graph neural networks. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 1894–1903 (2021)

    Google Scholar 

  33. You, Y., Chen, T., Sui, Y., Chen, T., Wang, Z., Shen, Y.: Graph contrastive learning with augmentations. In: Advances in Neural Information Processing Systems, vol. 33 (2020)

    Google Scholar 

  34. Zhao, T., Liu, Y., Neves, L., Woodford, O., Jiang, M., Shah, N.: Data augmentation for graph neural networks. arXiv preprint arXiv:2006.06830 (2020)

  35. Zheng, X., Liu, Y., Pan, S., Zhang, M., Jin, D., Yu, P.S.: Graph neural networks for graphs with heterophily: a survey. arXiv preprint arXiv:2202.07082 (2022)

  36. Zhu, J., Yan, Y., Zhao, L., Heimann, M., Akoglu, L., Koutra, D.: Beyond homophily in graph neural networks: current limitations and effective designs. In: Advances in Neural Information Processing Systems, vol. 33 (2020)

    Google Scholar 

  37. Zhu, X., Ghahramani, Z., Lafferty, J.D.: Semi-supervised learning using gaussian fields and harmonic functions. In: Proceedings of the 20th International conference on Machine learning (ICML 2003), pp. 912–919 (2003)

    Google Scholar 

Download references

Acknowledgement

This work was supported by the National Key R &D Program of China (No. 2022ZD0115100), the National Natural Science Foundation of China Project (No. U21A20427), and Project (No. WU2022A009) from the Center of Synthetic Biology and Integrated Bioengineering of Westlake University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stan Z. Li .

Editor information

Editors and Affiliations

Ethics declarations

Ethical Statement

Our submission does not involve any ethical issues, including but not limited to privacy, security, etc.

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wu, L., Tan, C., Liu, Z., Gao, Z., Lin, H., Li, S.Z. (2023). Learning to Augment Graph Structure for both Homophily and Heterophily Graphs. In: Koutra, D., Plant, C., Gomez Rodriguez, M., Baralis, E., Bonchi, F. (eds) Machine Learning and Knowledge Discovery in Databases: Research Track. ECML PKDD 2023. Lecture Notes in Computer Science(), vol 14171. Springer, Cham. https://doi.org/10.1007/978-3-031-43418-1_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-43418-1_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-43417-4

  • Online ISBN: 978-3-031-43418-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics