Skip to main content

A Unified Spectral Rotation Framework Using a Fused Similarity Graph

  • Conference paper
  • First Online:
Machine Learning and Knowledge Discovery in Databases: Research Track (ECML PKDD 2023)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 14171))

  • 812 Accesses

Abstract

Multi-view spectral clustering has recently received a lot of attention. Existing methods, however, have two problems to be addressed: 1) similarity matrices used in clustering omit the high-order neighbor information, reducing embedding accuracy; 2) two independent procedures of embedding and discretization may result in a suboptimal result, lowering the final performance. To address the abovementioned issues, we propose a unified spectral rotation framework for multi-view clustering using a fused similarity graph. The method begins with establishing similarity graphs for each view and constructing first-order and high-order Laplacian matrices for capturing the hidden similarity among different nodes. Then embedding and discretization procedures are integrated into a new framework for performing a spectral rotation to obtain a global clustering result. Finally, a three-step optimization method for obtaining the final clustering labels is proposed. We conduct extensive experiments on a variety of real-world and synthetic datasets to validate the effectiveness of the proposed algorithm. Our method outperforms state-of-the-art methods by 8.0% on average, according to experimental results. The code of the proposed method is available at https://github.com/lting0120/USRF_FSG.git.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://www.svcl.ucsd.edu/projects/crossmodal/.

  2. 2.

    https://archive.ics.uci.edu/dataset/241/one+hundred+plant+species+leaves+data+set.

  3. 3.

    https://github.com/lting0120/USRF_FSG/tree/main/Datasets.

References

  1. Cai, X., Nie, F., Huang, H., Kamangar, F.: Heterogeneous image feature integration via multi-modal spectral clustering. In: CVPR 2011, pp. 1977–1984. IEEE (2011)

    Google Scholar 

  2. Chen, J., Zhu, J., Xie, S., Yang, H., Nie, F.: FGC_SS: fast graph clustering method by joint spectral embedding and improved spectral rotation. Inf. Sci. 613, 853–870 (2022)

    Article  Google Scholar 

  3. Chen, X., Nie, F., Huang, J.Z., Yang, M.: Scalable normalized cut with improved spectral rotation. In: Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence, pp. 1518–1524 (2017)

    Google Scholar 

  4. Chua, T.S., Tang, J., Hong, R., Li, H., Luo, Z., Zheng, Y.: NUS-WIDE: a real-world web image database from national university of Singapore. In: Proceedings of the ACM International Conference on Image and Video Retrieval, pp. 1–9 (2009)

    Google Scholar 

  5. De Sa, V.R., Gallagher, P.W., Lewis, J.M., Malave, V.L.: Multi-view kernel construction. Mach. Learn. 79(1), 47–71 (2010)

    MathSciNet  MATH  Google Scholar 

  6. Deng, L.: The MNIST database of handwritten digit images for machine learning research [best of the web]. IEEE Signal Process. Mag. 29(6), 141–142 (2012)

    Article  Google Scholar 

  7. Djelouah, A., Franco, J.S., Boyer, E., Le Clerc, F., Pérez, P.: Sparse multi-view consistency for object segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 37(9), 1890–1903 (2015)

    Article  Google Scholar 

  8. Greene, D., Cunningham, P.: Producing a unified graph representation from multiple social network views. In: Proceedings of the 5th Annual ACM Web Science Conference, pp. 118–121 (2013)

    Google Scholar 

  9. Hong, W., Wright, J., Huang, K., Ma, Y.: Multiscale hybrid linear models for lossy image representation. IEEE Trans. Image Process. 15(12), 3655–3671 (2006)

    Article  MathSciNet  Google Scholar 

  10. Huang, J., Nie, F., Huang, H.: Spectral rotation versus k-means in spectral clustering. In: Proceedings of the Twenty-Seventh AAAI Conference on Artificial Intelligence, pp. 431–437 (2013)

    Google Scholar 

  11. Kang, Z., Zhou, W., Zhao, Z., Shao, J., Han, M., Xu, Z.: Large-scale multi-view subspace clustering in linear time. In: Proceedings of the Thirty-Fourth AAAI Conference on Artificial Intelligence, pp. 4412–4419 (2020)

    Google Scholar 

  12. Khan, A., Maji, P.: Approximate graph Laplacians for multimodal data clustering. IEEE Trans. Pattern Anal. Mach. Intell. 43(3), 798–813 (2021)

    Article  Google Scholar 

  13. Kumar, A., Rai, P., Daume, H.: Co-regularized multi-view spectral clustering. In: Advances in Neural Information Processing Systems, pp. 1413–1421 (2011)

    Google Scholar 

  14. Li, X., Zhang, H., Wang, R., Nie, F.: Multiview Clustering: a scalable and parameter-free bipartite graph fusion method. IEEE Trans. Pattern Anal. Mach. Intell. 44(1), 330–344 (2022)

    Article  Google Scholar 

  15. Liu, B.Y., Huang, L., Wang, C.D., Lai, J.H., Yu, P.S.: Multi-view consensus proximity learning for clustering. IEEE Trans. Knowl. Data Eng. 34(7), 3405–3417 (2022)

    Google Scholar 

  16. Liu, X., Dou, Y., Yin, J., Wang, L., Zhu, E.: Multiple kernel k-means clustering with matrix-induced regularization. In: Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence, pp. 1888–1894 (2016)

    Google Scholar 

  17. Lu, H., Gao, Q., Zhang, X., Xia, W.: A multi-view clustering framework via integrating k-means and graph-cut. Neurocomputing 501, 609–617 (2022)

    Article  Google Scholar 

  18. Nie, F., Cai, G., Li, X.: Multi-view clustering and semi-supervised classification with adaptive neighbours. In: Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence, pp. 2408–2414 (2017)

    Google Scholar 

  19. Nie, F., Tian, L., Li, X.: Multiview clustering via adaptively weighted procrustes. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 2022–2030 (2018)

    Google Scholar 

  20. Peng, H., Hu, Y., Chen, J., Wang, H., Li, Y., Cai, H.: Integrating tensor similarity to enhance clustering performance. IEEE Trans. Pattern Anal. Mach. Intell. 44(5), 2582–2593 (2022)

    Article  Google Scholar 

  21. Petkos, G., Papadopoulos, S., Kompatsiaris, Y.: Social event detection using multimodal clustering and integrating supervisory signals. In: Proceedings of the 2nd ACM International Conference on Multimedia Retrieval, pp. 1–8 (2012)

    Google Scholar 

  22. Sun, M., et al.: Scalable multi-view subspace clustering with unified anchors. In: Proceedings of the 29th ACM International Conference on Multimedia, pp. 3528–3536 (2021)

    Google Scholar 

  23. Tang, J., Qu, M., Wang, M., Zhang, M., Yan, J., Mei, Q.: LINE: large-scale information network embedding. In: Proceedings of the 24th International Conference on World Wide Web, pp. 1067–1077 (2015)

    Google Scholar 

  24. Wan, Z., Xu, H., Gao, Q.: Multi-view clustering by joint spectral embedding and spectral rotation. Neurocomputing 462, 123–131 (2021)

    Article  Google Scholar 

  25. Wang, H., Yang, Y., Liu, B.: GMC: graph-based multi-view clustering. IEEE Trans. Knowl. Data Eng. 32(6), 1116–1129 (2020)

    Article  Google Scholar 

  26. Wang, S., et al.: Fast parameter-free multi-view subspace clustering with consensus anchor guidance. IEEE Trans. Image Process. 31, 556–568 (2022)

    Article  Google Scholar 

  27. Wang, Z., Li, Z., Wang, R., Nie, F., Li, X.: Large graph clustering with simultaneous spectral embedding and discretization. IEEE Trans. Pattern Anal. Mach. Intell. 43(12), 4426–4440 (2021)

    Article  Google Scholar 

  28. Winn, J., Jojic, N.: LOCUS: learning object classes with unsupervised segmentation. In: Proceedings of the Tenth IEEE International Conference on Computer Vision, pp. 756–763 (2005)

    Google Scholar 

  29. Xia, R., Pan, Y., Du, L., Yin, J.: Robust multi-view spectral clustering via low-rank and sparse decomposition. In: Proceedings of the Twenty-Eighth AAAI Conference on Artificial Intelligence, pp. 2149–2155 (2014)

    Google Scholar 

  30. Xu, H., Zhang, X., Xia, W., Gao, Q., Gao, X.: Low-rank tensor constrained co-regularized multi-view spectral clustering. Neural Netw. 132, 245–252 (2020)

    Article  MATH  Google Scholar 

  31. Yin, Q., Wu, S., He, R., Wang, L.: Multi-view clustering via pairwise sparse subspace representation. Neurocomputing 156, 12–21 (2015)

    Article  Google Scholar 

  32. Zhan, K., Nie, F., Wang, J., Yang, Y.: Multiview consensus graph clustering. IEEE Trans. Image Process. 28(3), 1261–1270 (2019)

    Article  MathSciNet  Google Scholar 

  33. Zhou, S., et al.: Multi-view spectral clustering with optimal neighborhood Laplacian matrix. In: Proceedings of the Thirty-Fourth AAAI Conference on Artificial Intelligence, pp. 6965–6972 (2020)

    Google Scholar 

  34. Zong, L., Zhang, X., Liu, X., Yu, H.: Weighted multi-view spectral clustering based on spectral perturbation. In: Proceedings of the Thirty-Second AAAI Conference on Artificial Intelligence, pp. 4621–4629 (2018)

    Google Scholar 

Download references

Acknowledgements

The works described in this paper are supported by The National Natural Science Foundation of China under Grant Nos. 61772210 and U1911201; The Project of Science and Technology in Guangzhou in China under Grant No. 202007040006.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuncheng Jiang .

Editor information

Editors and Affiliations

Ethics declarations

Ethical Statement

The authors declare that they have no conflict of interest and this study does not contain any research with human participants and/or animals.

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Liang, Y., Bai, W., Jiang, Y. (2023). A Unified Spectral Rotation Framework Using a Fused Similarity Graph. In: Koutra, D., Plant, C., Gomez Rodriguez, M., Baralis, E., Bonchi, F. (eds) Machine Learning and Knowledge Discovery in Databases: Research Track. ECML PKDD 2023. Lecture Notes in Computer Science(), vol 14171. Springer, Cham. https://doi.org/10.1007/978-3-031-43418-1_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-43418-1_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-43417-4

  • Online ISBN: 978-3-031-43418-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics