Skip to main content

Clifford Embeddings – A Generalized Approach for Embedding in Normed Algebras

  • Conference paper
  • First Online:
Machine Learning and Knowledge Discovery in Databases: Research Track (ECML PKDD 2023)

Abstract

A growing number of knowledge graph embedding models exploit the characteristics of division algebras (e.g., \(\mathbb {R}\), \(\mathbb {C}\), \(\mathbb {H}\), and \(\mathbb {O}\)) to learn embeddings. Yet, recent empirical results suggest that the suitability of algebras is contingent upon the knowledge graph being embedded. In this work, we tackle the challenge of selecting the algebra within which a given knowledge graph should be embedded by exploiting the fact that Clifford algebras \(Cl_{p,q}\) generalize over \(\mathbb {R}\), \(\mathbb {C}\), \(\mathbb {H}\), and \(\mathbb {O}\). Our embedding approach, Keci, is the first knowledge graph embedding model that can parameterize the algebra within which it operates. With Keci, the selection of an underlying algebra becomes a part of the learning process. Specifically, Keci starts the training process by learning real-valued embeddings for entities and relations in \(\mathbb {R}^m=Cl^m_{0,0}\). At each mini-batch update, Keci can steer the training process from \(Cl^m_{p,q}\) to \(Cl^m_{p+1,q}\) or \(Cl^m_{p,q+1}\) by processing the training loss. In this way, Keci can decide the algebra within which it operates in a data-driven fashion. Consequently, Keci is a generalization of previous approaches such as DistMult, ComplEx, QuatE, and OMult. Our evaluation suggests that Keci outperforms state-of-the-art embedding approaches on seven benchmark datasets. We provide an open-source implementation of Keci, including pre-trained models, training and evaluation scripts (https://github.com/dice-group/dice-embeddings).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Note that the two models have the same complexity w.r.t. the number of real numbers necessary to represent the final embeddings as every element of \(\mathbb {C}\) is encoded via two real numbers.

  2. 2.

    https://github.com/dice-group/dice-embeddings#pre-trained-models.

References

  1. Balažević, I., Allen, C., Hospedales, T.M.: Hypernetwork knowledge graph embeddings. In: Tetko, I.V., Kůrková, V., Karpov, P., Theis, F. (eds.) ICANN 2019. LNCS, vol. 11731, pp. 553–565. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-30493-5_52

    Chapter  Google Scholar 

  2. Balažević, I., Allen, C., Hospedales, T.M.: TuckER: tensor factorization for knowledge graph completion. arXiv preprint arXiv:1901.09590 (2019)

  3. Bonner, S., et al.: Understanding the performance of knowledge graph embeddings in drug discovery. Artif. Intell. Life Sci. 2, 100036 (2022)

    Google Scholar 

  4. Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J., Yakhnenko, O.: Translating embeddings for modeling multi-relational data. In: Advances in Neural Information Processing Systems, vol. 26 (2013)

    Google Scholar 

  5. Brandstetter, J., Berg, R.v.d., Welling, M., Gupta, J.K.: Clifford neural layers for PDE modeling. arXiv preprint arXiv:2209.04934 (2022)

  6. Chami, I., Wolf, A., Juan, D.C., Sala, F., Ravi, S., Ré, C.: Low-dimensional hyperbolic knowledge graph embeddings. arXiv preprint arXiv:2005.00545 (2020)

  7. Dai, Y., Wang, S., Xiong, N.N., Guo, W.: A survey on knowledge graph embedding: approaches, applications and benchmarks. Electronics 9(5), 750 (2020)

    Article  Google Scholar 

  8. Demir, C., Moussallem, D., Heindorf, S., Ngomo, A.C.N.: Convolutional hypercomplex embeddings for link prediction. In: Asian Conference on Machine Learning, pp. 656–671. PMLR (2021)

    Google Scholar 

  9. Demir, C., Ngomo, A.-C.N.: Convolutional complex knowledge graph embeddings. In: Verborgh, R., et al. (eds.) ESWC 2021. LNCS, vol. 12731, pp. 409–424. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-77385-4_24

    Chapter  Google Scholar 

  10. Demir, C., Ngomo, A.C.N.: Hardware-agnostic computation for large-scale knowledge graph embeddings. Softw. Impacts 13, 100377 (2022)

    Article  Google Scholar 

  11. Demir, C., Ngomo, A.C.N.: Learning permutation-invariant embeddings for description logic concepts. arXiv preprint arXiv:2303.01844 (2023)

  12. Dettmers, T., Minervini, P., Stenetorp, P., Riedel, S.: Convolutional 2D knowledge graph embeddings. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 32 (2018)

    Google Scholar 

  13. Gregucci, C., Nayyeri, M., Hernández, D., Staab, S.: Link prediction with attention applied on multiple knowledge graph embedding models. arXiv preprint arXiv:2302.06229 (2023)

  14. Hamilton, W., Bajaj, P., Zitnik, M., Jurafsky, D., Leskovec, J.: Embedding logical queries on knowledge graphs. In: Advances in Neural Information Processing Systems, vol. 31 (2018)

    Google Scholar 

  15. Hamilton, W., Ying, Z., Leskovec, J.: Inductive representation learning on large graphs. In: Advances in Neural Information Processing Systems, vol. 30 (2017)

    Google Scholar 

  16. Hitzer, E.: Extending Lasenby’s embedding of octonions in space-time algebra c l (1, 3) cl\(\backslash \)left (1, 3\(\backslash \)right), to all three-and four dimensional Clifford geometric algebras c l (p, q), n= p+ q= 3, 4 cl\(\backslash \)left (p, q\(\backslash \)right), n= p+ q= 3, 4. Mathematical Methods in the Applied Sciences (2022)

    Google Scholar 

  17. Hogan, A., et al.: Knowledge graphs. ACM Comput. Surv. (CSUR) 54(4), 1–37 (2021)

    Article  Google Scholar 

  18. Ji, G., He, S., Xu, L., Liu, K., Zhao, J.: Knowledge graph embedding via dynamic mapping matrix. In: Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing (volume 1: Long papers), pp. 687–696 (2015)

    Google Scholar 

  19. Lacroix, T., Usunier, N., Obozinski, G.: Canonical tensor decomposition for knowledge base completion. In: International Conference on Machine Learning, pp. 2863–2872. PMLR (2018)

    Google Scholar 

  20. Lin, Y., Liu, Z., Sun, M., Liu, Y., Zhu, X.: Learning entity and relation embeddings for knowledge graph completion. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 29 (2015)

    Google Scholar 

  21. Nguyen, D.Q., Nguyen, T.D., Nguyen, D.Q., Phung, D.: A novel embedding model for knowledge base completion based on convolutional neural network. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 2 (Short Papers), pp. 327–333. Association for Computational Linguistics, New Orleans, Louisiana (2018). https://doi.org/10.18653/v1/N18-2053, https://aclanthology.org/N18-2053

  22. Nickel, M., Murphy, K., Tresp, V., Gabrilovich, E.: A review of relational machine learning for knowledge graphs. Proc. IEEE 104(1), 11–33 (2015)

    Article  Google Scholar 

  23. Nickel, M., Rosasco, L., Poggio, T.: Holographic embeddings of knowledge graphs. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 30 (2016)

    Google Scholar 

  24. Nickel, M., et al.: A three-way model for collective learning on multi-relational data. In: ICML, vol. 11, pp. 3104482–3104584 (2011)

    Google Scholar 

  25. Paliwal, S., de Giorgio, A., Neil, D., Michel, J.B., Lacoste, A.: Preclinical validation of therapeutic targets predicted by tensor factorization on heterogeneous graphs. Sci. Rep. 10(1), 1–19 (2020)

    Article  Google Scholar 

  26. Prechelt, L.: Early Stopping-but When? Neural Networks: Tricks of the Trade: Second Edition, pp. 53–67 (2012)

    Google Scholar 

  27. Ren, F., Li, J., Zhang, H., Liu, S., Li, B., Ming, R., Bai, Y.: Knowledge graph embedding with atrous convolution and residual learning. arXiv preprint arXiv:2010.12121 (2020)

  28. Ruffinelli, D., Broscheit, S., Gemulla, R.: You CAN teach an old dog new tricks! on training knowledge graph embeddings. In: 8th International Conference on Learning Representations, ICLR 2020, Addis Ababa, Ethiopia, April 26–30, 2020. OpenReview.net (2020). https://openreview.net/forum?id=BkxSmlBFvr

  29. Sun, Z., Deng, Z.H., Nie, J.Y., Tang, J.: RotatE: knowledge graph embedding by relational rotation in complex space. arXiv preprint arXiv:1902.10197 (2019)

  30. Trouillon, T., Dance, C.R., Gaussier, E., Welbl, J., Riedel, S., Bouchard, G.: Knowledge graph completion via complex tensor factorization. J. Mach. Learn. Res. 18(1), 4735–4772 (2017)

    Google Scholar 

  31. Trouillon, T., Dance, C.R., Welbl, J., Riedel, S., Gaussier, É., Bouchard, G.: Knowledge graph completion via complex tensor factorization. arXiv preprint arXiv:1702.06879 (2017)

  32. Trouillon, T., Welbl, J., Riedel, S., Gaussier, É., Bouchard, G.: Complex embeddings for simple link prediction. In: International Conference on Machine Learning, pp. 2071–2080. PMLR (2016)

    Google Scholar 

  33. Wang, M., Qiu, L., Wang, X.: A survey on knowledge graph embeddings for link prediction. Symmetry 13(3), 485 (2021)

    Article  Google Scholar 

  34. Wang, Q., Mao, Z., Wang, B., Guo, L.: Knowledge graph embedding: a survey of approaches and applications. IEEE Trans. Knowl. Data Eng. 29(12), 2724–2743 (2017)

    Article  Google Scholar 

  35. Wang, Z., Zhang, J., Feng, J., Chen, Z.: Knowledge graph embedding by translating on hyperplanes. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 28 (2014)

    Google Scholar 

  36. Xiong, W., Hoang, T., Wang, W.Y.: DeepPath: a reinforcement learning method for knowledge graph reasoning. arXiv preprint arXiv:1707.06690 (2017)

  37. Yang, B., Yih, W.t., He, X., Gao, J., Deng, L.: Embedding entities and relations for learning and inference in knowledge bases. arXiv preprint arXiv:1412.6575 (2014)

  38. Ye, Z., Kumar, Y.J., Sing, G.O., Song, F., Wang, J.: A comprehensive survey of graph neural networks for knowledge graphs. IEEE Access 10, 75729–75741 (2022)

    Article  Google Scholar 

  39. Yi, H.C., You, Z.H., Huang, D.S., Kwoh, C.K.: Graph representation learning in bioinformatics: trends, methods and applications. Briefings in Bioinformatics 23(1), bbab340 (2022)

    Google Scholar 

  40. Yu, M., et al.: Translation-based embeddings with octonion for knowledge graph completion. Appl. Sci. 12(8), 3935 (2022)

    Article  Google Scholar 

  41. Zamini, M., Reza, H., Rabiei, M.: A review of knowledge graph completion. Information 13(8), 396 (2022)

    Article  Google Scholar 

  42. Zhang, S., Tay, Y., Yao, L., Liu, Q.: Quaternion knowledge graph embeddings. In: Advances in Neural Information Processing Systems, vol. 32 (2019)

    Google Scholar 

Download references

Acknowledgements

This work has been supported by the HORIZON Europe research and innovation programme (GA No 101070305), by the Ministry of Culture and Science of North Rhine-Westphalia (GA No NW21-059D), by the German Research Foundation (GA No TRR 318/1 2021 - 438445824) and by the H2020 Marie Skłodowska-Curie programme (GA No 860801).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Caglar Demir .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Demir, C., Ngonga Ngomo, AC. (2023). Clifford Embeddings – A Generalized Approach for Embedding in Normed Algebras. In: Koutra, D., Plant, C., Gomez Rodriguez, M., Baralis, E., Bonchi, F. (eds) Machine Learning and Knowledge Discovery in Databases: Research Track. ECML PKDD 2023. Lecture Notes in Computer Science(), vol 14171. Springer, Cham. https://doi.org/10.1007/978-3-031-43418-1_34

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-43418-1_34

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-43417-4

  • Online ISBN: 978-3-031-43418-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics