Skip to main content

Distinct Geometrical Representations for Temporal and Relational Structures in Knowledge Graphs

  • Conference paper
  • First Online:
Machine Learning and Knowledge Discovery in Databases: Research Track (ECML PKDD 2023)

Abstract

Geometric aspects of knowledge graph embedding models directly impact their capability to preserve knowledge from the original graph to the vector space. For example, the capability to preserve structural patterns such as hierarchies, loops, and paths present as relational structures in a knowledge graph depends on the underlying geometry. In these years, temporal information has gained lots of attention from researchers. While non-Euclidean geometry, e.g. Hyperbolic Geometry, has been shown to work well in static knowledge graph embedding models for such relational structures, this does not hold for temporal information in knowledge graphs. This is due to the different characteristics of temporal information: time can be seen mostly as a linear construct and using a geometry that is not suitable for this can adversely affect performance. To address this research gap, we provide a novel temporal knowledge graph embedding model that combines different geometries: the non-temporal part of the knowledge is mapped to a hyperbolic space and the temporal part is mapped to a Euclidean space. Our extensive evaluations on several benchmark datasets show a significant performance improvement in comparison to state-of-the-art models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ali, M., et al.: Bringing light into the dark: a large-scale evaluation of knowledge graph embedding models under a unified framework. IEEE Trans. Pattern Anal. Mach. Intell. (2021)

    Google Scholar 

  2. Anderson, E.: Discontinuous plane rotations and the symmetric eigenvalue problem (2000)

    Google Scholar 

  3. Balažević, I., Allen, C., Hospedales, T.: Multi-relational poincaré graph embeddings. In: Advances in Neural Information Processing Systems (2019)

    Google Scholar 

  4. Bellomarini, L., Sallinger, E., Vahdati, S.: Chapter 2 Knowledge graphs: the layered perspective. In: Janev, V., Graux, D., Jabeen, H., Sallinger, E. (eds.) Knowledge Graphs and Big Data Processing. LNCS, vol. 12072, pp. 20–34. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-53199-7_2

    Chapter  Google Scholar 

  5. Bellomarini, L., Sallinger, E., Vahdati, S.: Chapter 6 Reasoning in knowledge graphs: an embeddings spotlight. In: Janev, V., Graux, D., Jabeen, H., Sallinger, E. (eds.) Knowledge Graphs and Big Data Processing. LNCS, vol. 12072, pp. 87–101. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-53199-7_6

    Chapter  Google Scholar 

  6. Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J., Yakhnenko, O.: Translating embeddings for modeling multi-relational data. Advances in neural information processing systems 26 (2013)

    Google Scholar 

  7. Cao, Z., Xu, Q., Yang, Z., Cao, X., Huang, Q.: Geometry interaction knowledge graph embeddings. In: AAAI Conference on Artificial Intelligence (2022)

    Google Scholar 

  8. Carlson, A., Betteridge, J., Kisiel, B., Settles, B., Hruschka, E.R., Mitchell, T.M.: Toward an architecture for never-ending language learning. In: Twenty-Fourth AAAI Conference on Artificial Intelligence (2010)

    Google Scholar 

  9. Chami, I., Wolf, A., Juan, D.C., Sala, F., Ravi, S., Ré, C.: Low-dimensional hyperbolic knowledge graph embeddings. arXiv preprint arXiv:2005.00545 (2020)

  10. Dasgupta, S.S., Ray, S.N., Talukdar, P.: Hyte: hyperplane-based temporally aware knowledge graph embedding. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, pp. 2001–2011 (2018)

    Google Scholar 

  11. Dettmers, T., Minervini, P., Stenetorp, P., Riedel, S.: Convolutional 2d knowledge graph embeddings. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 32 (2018)

    Google Scholar 

  12. García-Durán, A., Dumančić, S., Niepert, M.: Learning sequence encoders for temporal knowledge graph completion. arXiv preprint arXiv:1809.03202 (2018)

  13. Goel, R., Kazemi, S.M., Brubaker, M., Poupart, P.: Diachronic embedding for temporal knowledge graph completion. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, pp. 3988–3995 (2020)

    Google Scholar 

  14. Han, Z., Ma, Y., Chen, P., Tresp, V.: Dyernie: dynamic evolution of riemannian manifold embeddings for temporal knowledge graph completion. arXiv preprint arXiv:2011.03984 (2020)

  15. Krackhardt, D.: Graph theoretical dimensions of informal organizations. In: Computational Organization Theory, pp. 107–130. Psychology Press (2014)

    Google Scholar 

  16. Lacroix, T., Obozinski, G., Usunier, N.: Tensor decompositions for temporal knowledge base completion. arXiv preprint arXiv:2004.04926 (2020)

  17. Leblay, J., Chekol, M.W.: Deriving validity time in knowledge graph. In: Companion Proceedings of the The Web Conference 2018, pp. 1771–1776 (2018)

    Google Scholar 

  18. Leetaru, K., Schrodt, P.A.: Gdelt: global data on events, location, and tone, 1979–2012. In: ISA Annual Convention, vol. 2, pp. 1–49. Citeseer (2013)

    Google Scholar 

  19. Lehmann, J., et al.: Dbpedia-a large-scale, multilingual knowledge base extracted from Wikipedia. Semantic web 6(2), 167–195 (2015)

    Article  Google Scholar 

  20. Messner, J., Abboud, R., Ceylan, I.I.: Temporal knowledge graph completion using box embeddings. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 36, pp. 7779–7787 (2022)

    Google Scholar 

  21. Montella, S., Rojas-Barahona, L., Heinecke, J.: Hyperbolic temporal knowledge graph embeddings with relational and time curvatures. arXiv preprint arXiv:2106.04311 (2021)

  22. Nguyen, D.Q., Nguyen, T.D., Nguyen, D.Q., Phung, D.: A novel embedding model for knowledge base completion based on convolutional neural network. In: Proceedings of the 16th Annual Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (NAACL-HLT), pp. 327–333 (2018)

    Google Scholar 

  23. Nickel, M., Tresp, V., Kriegel, H.P.: A three-way model for collective learning on multi-relational data. In: ICML (2011)

    Google Scholar 

  24. Sadeghian, A., Armandpour, M., Colas, A., Wang, D.Z.: Chronor: rotation based temporal knowledge graph embedding. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 35, pp. 6471–6479 (2021)

    Google Scholar 

  25. Suchanek, F.M., Kasneci, G., Weikum, G.: Yago: a core of semantic knowledge. In: Proceedings of the 16th International Conference on World Wide Web, pp. 697–706 (2007)

    Google Scholar 

  26. Sun, Z., Deng, Z.H., Nie, J.Y., Tang, J.: Rotate: knowledge graph embedding by relational rotation in complex space. arXiv preprint arXiv:1902.10197 (2019)

  27. Trouillon, T., Welbl, J., Riedel, S., Gaussier, É., Bouchard, G.: Complex embeddings for simple link prediction. In: International Conference on Machine Learning, pp. 2071–2080. PMLR (2016)

    Google Scholar 

  28. Ungar, A.: Hyperbolic trigonometry and its application in the poincaré ball model of hyperbolic geometry. Comput. Math. Appl. 41(1), 135–147 (2001). https://doi.org/10.1016/S0898-1221(01)85012-4

    Article  MathSciNet  MATH  Google Scholar 

  29. Vrandečić, D., Krötzsch, M.: Wikidata: a free collaborative knowledgebase. Commun. ACM 57(10), 78–85 (2014)

    Article  Google Scholar 

  30. Wang, Z., Zhang, J., Feng, J., Chen, Z.: Knowledge graph embedding by translating on hyperplanes. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 28 (2014)

    Google Scholar 

  31. Xu, C., Nayyeri, M., Alkhoury, F., Yazdi, H.S., Lehmann, J.: Tero: a time-aware knowledge graph embedding via temporal rotation. arXiv preprint arXiv:2010.01029 (2020)

Download references

Acknowledgement

We acknowledge the support of the China Scholarship Council for the first author, and contribution of the following EU projects: CALLISTO(101004152), E-Vita (101016453), ScaDS.AI (IS18026A-F). We thank the Natural Science Foundation of China (42271391 and 62006214), Joint Funds of Equipment Pre-Research and Ministry of Education of China Grant No. 8091B022148, the 14th Five-year Pre-research Project of Civil Aerospace in China, and Hubei excellent young and middle-aged science and technology innovation team plan project under Grant No. T2021031. The authors are grateful to the Center for Information Services and High Performance Computing [Zentrum für Informationsdienste und Hochleistungsrechnen (ZIH)] at TU Dresden for providing its facilities for high throughput calculations, and Leipzig universities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maocai Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Song, B., Xu, C., Amouzouvi, K., Wang, M., Lehmann, J., Vahdati, S. (2023). Distinct Geometrical Representations for Temporal and Relational Structures in Knowledge Graphs. In: Koutra, D., Plant, C., Gomez Rodriguez, M., Baralis, E., Bonchi, F. (eds) Machine Learning and Knowledge Discovery in Databases: Research Track. ECML PKDD 2023. Lecture Notes in Computer Science(), vol 14171. Springer, Cham. https://doi.org/10.1007/978-3-031-43418-1_36

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-43418-1_36

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-43417-4

  • Online ISBN: 978-3-031-43418-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics