Abstract
The recent contrastive learning methods, due to their effectiveness in representation learning, have been widely applied to modeling graph data. Random perturbation is widely used to build contrastive views for graph data, which however, could accidentally break graph structures and lead to suboptimal performance. In addition, graph data is usually highly abstract, so it is hard to extract intuitive meanings and design more informed augmentation schemes. Effective representations should preserve key characteristics in data and abandon superfluous information. In this paper, we propose ENGAGE (ExplaNation Guided data AuGmEntation), where explanation guides the contrastive augmentation process to preserve the key parts in graphs and explore removing superfluous information. Specifically, we design an efficient unsupervised explanation method called smoothed activation map as the indicator of node importance in representation learning. Then, we design two data augmentation schemes on graphs for perturbing structural and feature information, respectively. We also provide justification for the proposed method in the framework of information theories. Experiments of both graph-level and node-level tasks, on various model architectures and on different real-world graphs, are conducted to demonstrate the effectiveness and flexibility of ENGAGE. The code of ENGAGE can be found here (https://github.com/sycny/ENGAGE).
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
The appendix file is provided here: https://github.com/sycny/ENGAGE.
References
Baldassarre, F., Azizpour, H.: Explainability techniques for graph convolutional networks. arXiv preprint: arXiv:1905.13686 (2019)
Chen, T., Kornblith, S., Norouzi, M., Hinton, G.: A simple framework for contrastive learning of visual representations. In: International Conference on Machine Learning, pp. 1597–1607. PMLR (2020)
Chen, X., He, K.: Exploring simple Siamese representation learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 15750–15758 (2021)
Cheng, P., Hao, W., Yuan, S., Si, S., Carin, L.: FAIRFIL: contrastive neural debiasing method for pretrained text encoders. arXiv preprint: arXiv:2103.06413 (2021)
Fang, Y., et al.: Molecular contrastive learning with chemical element knowledge graph. arXiv preprint: arXiv:2112.00544 (2021)
Federici, M., Dutta, A., Forré, P., Kushman, N., Akata, Z.: Learning robust representations via multi-view information bottleneck. arXiv preprint: arXiv:2002.07017 (2020)
Gao, H., Ji, S.: Graph U-Nets. In: ICML, pp. 2083–2092. PMLR (2019)
Grover, A., Leskovec, J.: node2vec: scalable feature learning for networks. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 855–864 (2016)
Hamilton, W., Ying, Z., Leskovec, J.: Inductive representation learning on large graphs. In: NeurIPS, pp. 1024–1034 (2017)
Hassani, K., Khasahmadi, A.H.: Contrastive multi-view representation learning on graphs. In: International Conference on Machine Learning, pp. 4116–4126. PMLR (2020)
Hassani, K., Khasahmadi, A.H.: Learning graph augmentations to learn graph representations. arXiv preprint: arXiv:2201.09830 (2022)
He, K., Fan, H., Wu, Y., Xie, S., Girshick, R.: Momentum contrast for unsupervised visual representation learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9729–9738 (2020)
Huang, Q., Yamada, M., Tian, Y., Singh, D., Yin, D., Chang, Y.: GraphLIME: local interpretable model explanations for graph neural networks. arXiv preprint: arXiv:2001.06216 (2020)
Johnson, J., Douze, M., Jégou, H.: Billion-scale similarity search with GPUs. IEEE Trans. Big Data 7(3), 535–547 (2019)
Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. arXiv preprint: arXiv:1609.02907 (2016)
Kipf, T.N., Welling, M.: Variational graph auto-encoders. arXiv preprint: arXiv:1611.07308 (2016)
Li, S., Wang, X., Zhang, A., Wu, Y.X., He, X., Chua, T.S.: Let invariant rationale discovery inspire graph contrastive learning. In: ICML (2022)
Liu, G., Zhao, T., Xu, J., Luo, T., Jiang, M.: Graph rationalization with environment-based augmentations. arXiv:abs/2206.02886 (2022)
Lucic, A., Ter Hoeve, M., Tolomei, G., de Rijke, M., Silvestri, F.: CF-GNNExplainer: counterfactual explanations for graph neural networks. arXiv preprint: arXiv:2102.03322 (2021)
Luo, D., et al.: Parameterized explainer for graph neural network. In: Advances in neural information processing systems, vol. 33, pp. 19620–19631 (2020)
Pan, S., Hu, R., Long, G., Jiang, J., Yao, L., Zhang, C.: Adversarially regularized graph autoencoder for graph embedding. arXiv preprint: arXiv:1802.04407 (2018)
Peng, X., Wang, K., Zhu, Z., You, Y.: Crafting better contrastive views for Siamese representation learning. arXiv preprint: arXiv:2202.03278 (2022)
Perozzi, B., Al-Rfou, R., Skiena, S.: DeepWalk: online learning of social representations. In: Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 701–710 (2014)
Pope, P.E., Kolouri, S., Rostami, M., Martin, C.E., Hoffmann, H.: Explainability methods for graph convolutional neural networks. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10772–10781 (2019)
Qiu, J., Dong, Y., Ma, H., Li, J., Wang, K., Tang, J.: Network embedding as matrix factorization: unifying DeepWalk, LINE, PTE, and node2vec. In: Proceedings of the Eleventh ACM International Conference on Web Search and Data Mining, pp. 459–467 (2018)
Schlichtkrull, M.S., De Cao, N., Titov, I.: Interpreting graph neural networks for nlp with differentiable edge masking. arXiv preprint: arXiv:2010.00577 (2020)
Schnake, T., et al.: XAI for graphs: explaining graph neural network predictions by identifying relevant walks. arXiv preprint: arXiv:2006.03589 (2020)
Schwarzenberg, R., Hübner, M., Harbecke, D., Alt, C., Hennig, L.: Layerwise relevance visualization in convolutional text graph classifiers. arXiv preprint: arXiv:1909.10911 (2019)
Shervashidze, N., Schweitzer, P., Van Leeuwen, E.J., Mehlhorn, K., Borgwardt, K.M.: Weisfeiler-lehman graph kernels. J. Mach. Learn. Res. 12(9) (2011)
Shi, Y., et al.: Chatgraph: interpretable text classification by converting ChatGPT knowledge to graphs. arXiv preprint: arXiv:2305.03513 (2023)
Sun, F.Y., Hoffmann, J., Verma, V., Tang, J.: InfoGraph: unsupervised and semi-supervised graph-level representation learning via mutual information maximization. arXiv preprint: arXiv:1908.01000 (2019)
Tan, Q., et al.: S2GAE: self-supervised graph autoencoders are generalizable learners with graph masking. In: Proceedings of the Sixteenth ACM International Conference on Web Search and Data Mining, pp. 787–795 (2023)
Tang, J., Qu, M., Wang, M., Zhang, M., Yan, J., Mei, Q.: Line: large-scale information network embedding. In: Proceedings of the 24th International Conference on World Wide Web, pp. 1067–1077 (2015)
Tian, Y., Krishnan, D., Isola, P.: Contrastive multiview coding. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12356, pp. 776–794. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58621-8_45
Tian, Y., Sun, C., Poole, B., Krishnan, D., Schmid, C., Isola, P.: What makes for good views for contrastive learning? In: Advances in Neural Information Processing Systems, vol. 33, pp. 6827–6839 (2020)
Tishby, N., Pereira, F.C., Bialek, W.: The information bottleneck method. arXiv preprint: arXiv:physics/0004057 (2000)
Veličković, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: ICLR (2018)
Veličković, P., Fedus, W., Hamilton, W.L., Liò, P., Bengio, Y., Hjelm, R.D.: Deep graph infomax. arXiv preprint: arXiv:1809.10341 (2018)
Vu, M.N., Thai, M.T.: PGM-explainer: probabilistic graphical model explanations for graph neural networks. arXiv preprint: arXiv:2010.05788 (2020)
Wang, H., Guo, X., Deng, Z.H., Lu, Y.: Rethinking minimal sufficient representation in contrastive learning. arXiv preprint: arXiv:2203.07004 (2022)
Wang, X., Wu, Y., Zhang, A., He, X., Seng Chua, T.: Causal screening to interpret graph neural networks (2021)
Wiltschko, A.B., et al.: Evaluating attribution for graph neural networks (2020)
Wu, F., Souza, A., Zhang, T., Fifty, C., Yu, T., Weinberger, K.: Simplifying graph convolutional networks. In: ICML, pp. 6861–6871. PMLR (2019)
Wu, X., Zhou, K., Sun, M., Wang, X., Liu, N.: A survey of graph prompting methods: techniques, applications, and challenges. arXiv preprint: arXiv:2303.07275 (2023)
Wu, Y., Wang, X., Zhang, A., He, X., Chua, T.S.: Discovering invariant rationales for graph neural networks. In: International Conference on Learning Representations (2022)
Xia, J., Wu, L., Chen, J., Hu, B., Li, S.Z.: SimGRACE: a simple framework for graph contrastive learning without data augmentation. arXiv preprint: arXiv:2202.03104 (2022)
Xu, D., Cheng, W., Luo, D., Chen, H., Zhang, X.: InfoGCL: information-aware graph contrastive learning. In: Advances in Neural Information Processing Systems, vol. 34 (2021)
Xu, K., Hu, W., Leskovec, J., Jegelka, S.: How powerful are graph neural networks? arXiv preprint: arXiv:1810.00826 (2018)
Yanardag, P., Vishwanathan, S.: Deep graph kernels. In: Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 1365–1374 (2015)
Ying, Z., Bourgeois, D., You, J., Zitnik, M., Leskovec, J.: GNNExplainer: generating explanations for graph neural networks. In: Advances in Neural Information Processing Systems, vol. 32 (2019)
You, Y., Chen, T., Shen, Y., Wang, Z.: Graph contrastive learning automated. In: International Conference on Machine Learning, pp. 12121–12132. PMLR (2021)
You, Y., Chen, T., Sui, Y., Chen, T., Wang, Z., Shen, Y.: Graph contrastive learning with augmentations. In: Advances in Neural Information Processing Systems, vol. 33, pp. 5812–5823 (2020)
Yuan, H., Tang, J., Hu, X., Ji, S.: XGNN: towards model-level explanations of graph neural networks. In: Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 430–438 (2020)
Yuan, H., Yu, H., Gui, S., Ji, S.: Explainability in graph neural networks: a taxonomic survey. arXiv preprint: arXiv:2012.15445 (2020)
Zhang, Y., Defazio, D., Ramesh, A.: Relex: a model-agnostic relational model explainer. arXiv preprint: arXiv:2006.00305 (2020)
Zhou, B., Khosla, A., Lapedriza, A., Oliva, A., Torralba, A.: Learning deep features for discriminative localization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2921–2929 (2016)
Zhu, Y., Xu, Y., Yu, F., Liu, Q., Wu, S., Wang, L.: Deep graph contrastive representation learning. arXiv preprint: arXiv:2006.04131 (2020)
Zhu, Y., Xu, Y., Yu, F., Liu, Q., Wu, S., Wang, L.: Graph contrastive learning with adaptive augmentation. In: Proceedings of the Web Conference 2021, pp. 2069–2080 (2021)
Acknowledgements
The work is in part supported by NSF grant IIS-2223768. The views and conclusions contained in this paper are those of the authors and should not be interpreted as representing any funding agencies.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Ethics declarations
Ethical Statement
Our team acknowledges the importance of ethical considerations in the development and deployment of our ENGAGE framework. We ensure that our work does not lead to any potential negative societal impacts. We only use existing datasets and cite the creators of those datasets to ensure they receive proper credit. Additionally, we do not allow our work to be used for policing or military purposes. We believe it is essential to prioritize ethical considerations in all aspects of machine learning and data mining to ensure that these technologies are used for the benefit of society as a whole.
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Shi, Y., Zhou, K., Liu, N. (2023). ENGAGE: Explanation Guided Data Augmentation for Graph Representation Learning. In: Koutra, D., Plant, C., Gomez Rodriguez, M., Baralis, E., Bonchi, F. (eds) Machine Learning and Knowledge Discovery in Databases: Research Track. ECML PKDD 2023. Lecture Notes in Computer Science(), vol 14171. Springer, Cham. https://doi.org/10.1007/978-3-031-43418-1_7
Download citation
DOI: https://doi.org/10.1007/978-3-031-43418-1_7
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-43417-4
Online ISBN: 978-3-031-43418-1
eBook Packages: Computer ScienceComputer Science (R0)