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Abstract. Recent research has shown that alignment between the struc-
ture of graph data and the geometry of an embedding space is crucial
for learning high-quality representations of the data. The uniform geom-
etry of Euclidean and hyperbolic spaces allows for representing graphs
with uniform geometric and topological features, such as grids and hi-
erarchies, with minimal distortion. However, real-world graph data is
characterized by multiple types of geometric and topological features,
necessitating more sophisticated geometric embedding spaces. In this
work, we utilize the Riemannian symmetric space of symmetric positive
definite matrices (SPD) to construct graph neural networks that can
robustly handle complex graphs. To do this, we develop an innovative
library that leverages the SPD gyrocalculus tools [28] to implement the
building blocks of five popular graph neural networks in SPD. Exper-
imental results demonstrate that our graph neural networks in SPD
substantially outperform their counterparts in Euclidean and hyperbolic
spaces, as well as the Cartesian product thereof, on complex graphs for
node and graph classification tasks. We release the library and datasets
at https://github.com/andyweizhao/SPD4GNNs.

Keywords: Graph Neural Networks - Riemannian Geometry - Symmetric
Space - Space of Symmetric Positive Definite Matrices

1 Introduction

Complex structures are a common feature in real-world graph data, where the
graphs often contain a large number of connected subgraphs of varying topologies
(including grids, trees, and combinations thereof). While accommodating the
diversity of such graphs is necessary for robust representation learning, neither
Euclidean nor hyperbolic geometry alone has been sufficient [25].

* These authors contributed equally to this work.
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Fig. 1. Propagation schema for utilizing SPD geometry while performing calculations
in the tangent (Euclidean) space: starting from an SPD embedding, map a node and
its neighbors to the tangent space via the logarithm, and perform a modified Euclidean
aggregation (Table [1]) before returning to SPD via the Riemannian exponential map.

This inefficiency stems from geometric reasons. Properties of the embedding
space strongly control which graph topologies embed with low distortion, with
simple geometries selecting only narrow classes of graphs. Euclidean geometry
provides the foundational example, where its abundant families of equidistant
lines allow for efficient representation of grid-like structures, but its polynomial
volume growth is too slow to accommodate tree-like data. This is somewhat
ameliorated by moving to higher dimensions (with faster polynomial volume
growth), though with a serious trade-off in efficiency [4]. An alternative is to
move to hyperbolic geometry, where volume growth is exponential, providing
plenty of room for branches to spread out for the isometric embedding of trees
[7/37]. However, hyperbolic geometry has a complementary trade-off: it does
not contain equidistant lines, which makes it unfit for embedding the grid-like
structures Euclidean space excelled at [g].

Many proposed graph neural networks utilize representations of graph data to
perform machine learning tasks in various graph domains, such as social networks,
biology and molecules [24I39TTIT3B4Y33IT4I2]. A subset of these networks take
seriously the constraints of geometry on representation capability, and work to
match various non-Euclidean geometries to common structures seen in graph data.
For instance, Chami et al. [II] and Defferrard et al. [I3] show that constructing
graph neural networks in hyperbolic and spherical spaces have been successful in
embedding graphs with hierarchical and cyclical structures, respectively. However,
the relative geometric simplicity of these spaces poses serious limitations including
(a) the need to know the graph structure prior to choosing the embedding space,
and (b) the inability to perform effectively with graphs built of geometrically
distinct sub-structures, a common feature of real-world data.

Avoiding these limitations may necessitate resorting to more complex geomet-
ric spaces. For example, Gu et al. [I8] employed Cartesian products of various
geometric spaces to represent graphs with mixed geometric structures. But any
such choice must be carefully considered: isometries play an essential role in the
construction of the above architectures, and any increase in complexity accompa-
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nied by too great a decrease in symmetry may render a space computationally
intractable.

Riemannian symmetric spaces, which have a rich geometry encompassing
all the aforementioned spaces, strike an effective balance between geometric
generality and ample symmetry. Lopez et al. [27] proposed particular symmetric
spaces, namely Siegel spaces, for graph embedding tasks, and demonstrated
that many different classes of graphs embed in these spaces with low distortion.
Lopez et al. [28] suggested utilizing the symmetric space SPD of symmetric
positive definite matrices that is less computationally expensive than Siegel
spaces. Furthermore, they developed gyrocalculus tools that enable “vector space
operations” on SPD.

Here we extend the idea of Lopez et al. [28] to construct graph neural networks
in SPD, particularly by utilizing their gyrocalculus tools to implement the building
blocks of graph neural networks in SPD. The building blocks include (a) feature
transformation via isometry maps, (b) propagation via graph convolution in the
tangent space of SPD (the space of symmetric matrices Sy, ), (c) bias addition via
gyrocalculus, (d) non-linearity acting on eigenspace, and (e) three classification
layers. We develop SPD4GNNs, an innovative library that showcases training five
popular graph neural networks in SPD,,, alongside the functionality for training
them in Euclidean and hyperbolic spaces.

We perform experiments to compare four ambient geometries (Euclidean,
hyperbolic, products thereof, and SPD) across popular graph neural networks,
evaluated on the node and graph classification tasks on nine datasets with varying
complexities. Results show that constructing graph neural networks in SPD space
leads to big improvements in accuracy over Euclidean and hyperbolic spaces on
complex graphs, at the cost of doubling (resp. quadrupling) the training time of
graph neural networks compared to hyperbolic space (resp. Euclidean space).

Finally, we provide a summary of the numerical issues we encountered and
the solutions to addressing them (see Appendix |F)).

2 Related Work

Graph Neural Networks. Graph neural networks (GNNs) have been profiled as
the de facto solutions for learning graph embeddings [2439140/33/T412]. These
networks can be differentiated into two dimensions: (a) how they propagate
information over graph nodes and (b) which geometric space they use to embed
the nodes. In Euclidean space, a class of GNNs has been proposed that
represents graph nodes in a flat space and propagates information via graph
convolution in various forms, such as using Chebyshev polynomial filters [12/24],
high-order filters [40], importance sampling [20], attention mechanisms [39], graph-
isomorphism designs [41342], and differential equations [T6J3314]. In contrast,
non-Euclidean spaces have a richer structure for representing geometric graph
structures in curved spaces. Recently, there has been a line of GNNs developed in
these spaces that performs graph convolution on different Riemannian manifolds
in order to accommodate various graph structures, such as hyperbolic space on
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tree-like graphs [I1126J42], spherical space on spherical graphs [I3], and Cartesian
products of thereof [19].

SPD Space. Representing data with SPD matrices has been researched for many
years, with the representations being primarily in the form of covariance matrices
[1522144)T7J9]. These matrices capture the statistical dependencies between
Euclidean features. Recent research focused on designing the building blocks
of neural networks in the space of covariance matrices. This includes feature
transformation that maps Euclidean features to covariance matrices via geodesic
Gaussian kernels [I5/6], nonlinearity on the eigenvalues of covariance matrices
[22], convolution through SPD filters [44] and Frechét mean [J], Riemannian
recurrent networks [10], and Riemannian batch normalization [5].

Nguyen et al. [3I] recently approached hand gesture classification by embed-
ding graphs into SPD via a neural network. The architectures we consider here
are different. While we alternate between SPD and its tangent space using the
exponential and logarithm maps, Nguyen et al. [31] do so via an aggregation
operation and the log map. Further, we couple this alternation with our building
blocks to operate graph neural networks in SPD.

3 Background

3.1 The Space SPD

We let SPD,, denote the space of positive definite real symmetric n x n matrices.
This space has the structure of a Riemannian manifold of non-positive curvature of
n(n+1)/2 dimensions. The tangent space to any point of SPD,, can be identified
with the vector space S, of all real symmetric n x n matrices. SPD,, is more
flexible than Euclidean or hyperbolic geometries, or products thereof. In particular,
it contains n-dimensional Euclidean subspaces, (n — 1)-dimensional hyperbolic
subspaces, products of | %] hyperbolic planes, and many other interesting spaces
as totally geodesic submanifolds; see the reference [21] for an in-depth introduction
to these well-known facts. While it is not yet fully understood how our proposed
models leverage the Euclidean and hyperbolic subspaces in SPD,,, we hypothesize
that the presence of these subspaces is an important factor in the superior
performance of SPD,, graph neural networks. Refer to Figure[2|for a demonstration
of how this hypothesis may manifest.

Riemannian Exponential and Logarithmic Maps. For SPD,,, the Riemannian
exponential map at the basepoint I,, agrees with the standard matrix exponential
exp: S, — SPD,,. This map is a diffeomorphism with inverse the matrix logarithm
log: SPD,, — S,,. These maps allow us to pass from SPD,, to S,, and back again.
Given any two points X,Y € SPD,,, there exists an isometry (i.e., a distance-
preserving transformation) that maps X to Y. As such, the choice of a basepoint
for the exponential and logarithm maps is arbitrary since any other point can
be mapped to the basepoint by an isometry. In particular, there is no loss of
generality with fixing the basepoint I,, as we do.
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Fig. 2. Graphs exhibiting both euclidean/grid-like and hyperbolic/tree-like features
(left) cannot embed well in either euclidean or hyperbolic spaces due to the impossibility
of isometrically embedding trees in Euclidean spaces and grids in hyperbolic spaces
(center). However, SPD,, (right) contains both euclidean and hyperbolic subspaces,
which allows embedding a broad class of graphs, including the example in the figure.

Non-linear Activation Functions in SPD,,. We use two non-linear functions
on SPD matrices, namely (i) ReEig [22]: factorizing a point P € SPD,, and
then employing the ReLU-like non-linear activation function ¢, to suppress the
positive eigenvalues that are bigger than 0.5 ﬂ

OPP(P) = U (2)UT P=UxU" (1)

(ii) TgReEig: projecting P € SPD,, into the tangent space and then suppressing
the negative eigenvalues of the projected point € S,, with the ReLLU non-linear
activation function ¢y, i.e. @STP(P) = U exp(pp(log(X)))UT.

3.2 Gyrocalculus on SPD

Addition and Subtraction. Gyro-calculus is a way of expressing natural analogues
of vector space operations in Riemannian manifolds. Following Lopez et al. [28§],
given two points P, @ € SPD,,, we denote gyro-addition and gyro-inversion by:

P®Q=VPQVP opP=p! (2)

For P, @ € SPD,,, the value P & Q € SPD,, is the result of applying the SPD,,-
translation moving the basepoint I,, to P, evaluated on Q).

Isometry Maps. Any invertible n x n real matrix M € GL(n,R) defines an
isometry of SPD,, by
M®P=MPM" (3)

where P € SPD,,.

Lopez et al. [28] proposed defining M in two forms, namely a rotation element
in SO(n) and a reflection element in O(n). In this case, the choice of rotation
and reflection becomes a hyperparameter for M, and that needs to be selected
before training. In contrast, the form of M we considered is more flexible and can
be automatically adjusted by training data. To do so, we first let M denote the

2 TgReEig equals ReEig in the case of ¢, (z) = max(z,1).
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Operations ‘GNNS‘Euclidean Space ‘Hyperbolic and SPD Space
Feature Trans‘ All ‘hLL = Wlel ‘Qi =Mo Z£71
1 1 1 1
GCN |p; = Zjej\/(i) ki jh; P = eXP(ZjeN(i) ki IOg(Qj))

Propagation | GAT

Cheb

P = aiihl + X ey @i gh | PP = exp(ai,i 1og(Q:) + X e preay @i,5 108(Q5))
PL=hl+ WIS v kighl |PL= QL@ (M' @ exp(X; iy bijlog Z571))

Bias&Nonlin | All |z} = o(p! + b') |zl = p(P! & B')

Table 1. Comparison of operations in different spaces across three graph neural networks,
i.e., GCN [24] , GAT [39] and 1-order Cheb [12]. SGC [40] and GIN [41] are presented
in Appendix [B] which indeed apply propagation before feature transformation.

orthogonal basis of a learnable square matrix, and then tune the square matrix
from training data. Thus, M, as an orthogonal matrix that extends rotations
and reflections, is better suited to fit the complexity of graph data.

4 Graph Neural Networks

In this section, we introduce the notation and building blocks of graph neural net-
works using graph convolutional network (GCN) [24] as an example, and present
modifications for operating these building blocks in SPD. Table [I] establishes
parallels between five popular graph neural networks in Euclidean, hyperbolic
and SPD spaces.

4.1 GCN in Euclidean Space

Given a graph G = (V,€) with a vertex set V and an edge set £, we define
d-dimensional input node features (z?);cy, where the superscript 0 indicates the
first layer. The goal of a graph neural network is to learn a mapping denoted by:

f: W€, (2D)iev) = Z e RIVIX

where Z is the space of node embeddings obtained from the final layer of GCN,
which we take as the input of classification layer to perform downstream tasks.

Let N(2) = {j : (,7) € E}U{i} be the set of neighbors of = € V with self-loops,
and (W' b') be a matrix of weights and a vector of bias parameters at layer [, and
©(+) be a non-linear activation function. We now introduce message passing,
which consists of the following three components for exchanging information
between the node ¢ and its neighbors at layer [:

hi = W%éil Feature transform (4)

pé = Z ki,jhé‘ Propagation (5)
JEN(3)

xi = (p(pﬁ + bl) Bias & Nonlinearity (6)

1

~1 1
where k; j = ¢; *¢; * with ¢; as the cardinality of N'(i). k; j represents the relative

importance of the node j to the node 1.
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4.2 GCN in SPD

Mapping from Fuclidean to SPD space. Oftentimes, input node features are
not given in SPD, but in Euclidean space (z29);cy € R?. Therefore, we design a
transformation that maps Euclidean features to a point in SPD. To do so, we first
learn a linear map that transforms the d-dimensional input features into a vector
of dimension n(n + 1)/2, that we arrange as the upper triangle of an initially
zero matrix A € R™*™. We then define a symmetric matrix U € S, such that
U= A+ AT. We now apply the exponential map such that Z = exp(U), which
moves the coordinates from the tangent space S, to the original manifold SPD,,.
Thus, the resulting node embeddings (Z?);cy are in SPD,,. By performing this
mapping only once, we enable GNNs to operate in SPD,,.

Feature Transform. We apply isometry maps to transform points in SPD at
different layers, denoted by: Q! = M' ® Z!7!, where Q}, Z!~! € SPD,, and M is
a isometry map (see §3.2)) at layer [ of the GNN.

Propagation. This step aggregates information from all the neighbors N (4) of a
given node 4, with the information weighted by the importance of a neighbor to
the node 4 (see Eq. [5)). We note that propagation involves addition and scaling
operators. This results in two alternative approaches for computing propagation:
(a) employing gyro-addition to aggregate information over the neighbors for each
node; (b) computing the Riemannian Fréchet mean in SPD,—which requires
hundreds of iterations to find a geometric center. Therefore, these approaches
are costly to compute and also involve the use of cumbersome Riemannian
optimization algorithms (see Appendix [Al| for optimization). Here we perform
aggregation via graph convolution in the space of symmetric matrices S,, denoted

1o
by: P! = exp(Xjeni) Kij log(QY)), where P} € SPD,, and k;; = ¢; c; ? (as
in the Euclidean case). This is similar to the approach of Chami et al. [I1] by
performing propagation in the tangent pace and the posterior projection through

the exponential map.

Bias Addition and Non-linearity. Finally, we add the bias B! at layer I to the
result of propagation through gyro-addition followed by applying a non-linear
function, denoted by: Z! = SPP(P!@ B'), with Z! € SPD,, as the new embedding
for the node i at layer [ and B! € SPD,,.

Message Passing in SPD. We establish a one-to-one correspondence between the
Euclidean and SPD versions of GCN at layer [ for node i:

Ql=Mw Zf_l Feature transform (7)
Pil = exp( Z ki log(Qé)) Propagation (8)
JEN (i)

Zf = SFP (Pll @® B Bias & non-lin (9)
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Classification. In node classification setupaEL we are given {Z;,y; }¥., on a dataset,
with IV as the number of instances, Z; € SPD,, as the i-th node embedding
obtained from the final layer of a graph neural network, and y; € {1,..., K} as the
true class of i-th node. Let h : SPD — {1,..., K} be a classifier that best predicts
the label y; of a given input Z;. Indeed, the input space of h can be in various
forms, not limited to SPD,,. Here we introduce three classifiers in two alternative
input spaces: (a) RU4+1D/2 and (b) S,[] To do so, we first take Riemannian
logarithm log: SPD,, — S,, of each Z; at the identity. For (a), we vectorize the
upper triangle elements of X as x = (X1,1--- X1,4, X222, , Xa,d) € RA(d+1)/2,
and then design two classifiers, i.e., LINEAR-XE (Linear Classifier coupled with
Cross-Entropy loss) and NC-MM (Nearest Centroid Classifier with Multi-Margin
loss). For (b), we design a SVM-like classifier SVM-MM acting in Sy, a similar
approach to the proposal of Nguyen et al. [31]. We present the details of these
classifiers in Appendix [G]

5 Experiments

In this section, we first perform experiments for node and graph classification,
and then analyze the ability of three geometric spaces in arranging and separating
nodes with different classes. Further, we compare the training efficiency of different
spaces and the usefulness of three classifiers. Lastly, we discuss product space
(the Cartesian product of Euclidean and hyperbolic spaces) and compare it with
SPD in Appendix [H]

Baselines. To investigate the usefulness of different geometric spaces on graph
neural networks, we choose five well-known graph architectures as representatives:
GCN [24], GAT [39], Cheb [12], SGC [40] and GIN [41], and evaluate these
architectures in Euclidean, hyperbolic and SPD spaces. For the hyperbolic versions
of these architectures, we use Poincaré models and extend the implementation of
Poincaré GCN [I1] to other four architectures.

5.1 Node Classification

Datasets. We evaluate graph neural networks in the three spaces on 5 popular
datasets for node classification: Disease [I], Airport [43], Pubmed [30], Citeseer
and Cora [36]. Overall, each dataset has a single graph that contains up to
thousands of labeled nodes. We use the public train, validation and test splits
of each dataset, and provide dataset statistics in Appendix [C] Unlike previous
works [TT42], we only use original node features to ensure a fair and transparent
comparison.

3 For graph classification, Z; and y; denote the ‘center’ of the graph i and its true class.
We take the arithmetic mean of node embeddings in SPD,, to produce Z; € SPD,,.

4 We also design several classifiers with the input space in SPD,,, but these do not
yield better results than those in Sy.
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Setup. We compare three geometries, namely Euclidean, hyperbolic and SPD,
in two low-dimensional spaces: (i) 6 dimensions: R®, H® and SPD3, and (ii) 15
dimensions: R'®, H'® and SPDs5, a common choice of dimensions in previous work
[11142]. The reason we considered for low-dimensional space is the following: If the
structure of data matches the geometry of embedding space, a low-dimensional
space can be leveraged efficiently for producing high-quality embeddings. If they
do not match, a large dimension is needed to compensate for the wrong use
of unsuitable geometric spaces. Here we investigate the efficiencies of different
geometries in space use when given a small dimension. We report mean accuracy
and standard deviation of binary/multi-label classification results under 10 runs,
and provide training details in Appendix [A]

—— Euclidean Hyperbolic —— SPD —— Euclidean Hyperbolic —— SPD —— Euclidean Hyperbolic —— SPD

(a) Disease (6 = 0.0) (b) Airport (6 = 1.0) (c) Pubmed (§ = 3.5)

—— Euclidean Hyperbolic —— SPD —— Euclidean Hyperbolic —— SPD

(d) Citeseer (6 = 5.0) (e) Cora (6 = 11.0)

Fig. 3. Evaluation of five graph neural networks coupled with LINEAR-XE on five node
classification datasets in the three 6-dimensional spaces: RS, H® and SPDs. Each radar
chart shows classification accuracy (on a varying scale, as noted by the gridlines with
circular shapes) from the five GNN architectures on a dataset. Each dataset has only
one graph. d-hyperbolicity shows the degree to which the dataset graph is a hyperbolic
tree. A smaller § indicates a more tree-like dataset.

Results. Figure [3]shows the accuracy results of a node classification task in the
three 6-dimensional geometries across five datasets on five GNNs, see also Table
[l For graphs with d-hyperbolicity > 1, SPD3 achieves the best accuracy in all
cases except the Cheb architecture on the Citeseer dataset. We also observe that
the accuracy of SPD is similar to hyperbolic space on the Airport dataset 6 = 1.
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Fig. 4. Comparison of 6d and 15d spaces on Disease. SPDs has 15 dimensions.

The Disease graph is a tree (6 = 0) and has optimal performance in hyperbolic
space. The accuracy is much lower for these two tree-like datasets in Euclidean
geometry for all GNNs except Cheb.

In the case of tree-like datasets, hyperbolic space provides not only accuracy
for these tasks but also efficiency. Figure [ compares 6-dimensional hyperbolic
space to R!® and SPDj (also 15-dimensional), showing that even a much smaller
dimensional hyperbolic space achieves the best performance on Disease. Notably,
the poor performance of Cheb across all spaces might be attributed to the
low representational capacity of the first-order Chebyshev polynomial used in
the graph neural network for embedding the tree structure of Disease. Results
comparing the 6d and 15d geometries are reported in Table El (appendix).

5.2 Graph Classification

Datasets. We evaluate graph neural networks in three spaces on the popular
TUDataset benchmark [29]. Here we focus on datasets with node features, and
choose a sample of 4 popular datasets in two domains, namely (a) Biology:
ENZYMES [35] and PROTEINS [3]; (b) Molecules: COX2 [38] and AIDS [32].
Overall, each dataset instance has one labeled graph with dozens of nodes. We
use the first split of train and test sets in the 10-fold cross-validation setuﬂ and
select 10% of the training set uniformly at random as the development set. We
provide data statistics in Appendix [C]

Setup. Following Morris et al. [29], we predict the class of an unlabeled graph
by classifying its center. In particular, we produce the graph center by using
mean pooling to take the arithmetic mean of node embeddings in a graph. To
compare efficiency in space use, we conduct experiments in three spaces with the
same dimension size of 36, namely R3%, H36 and SPDsg, the smallest dimension

® Morris et al. [29] proposed to run 10-fold cross-validation by generating ten splits
of train and test sets, and repeat this ten times to reduce model initialization. This
requires 100 runs for one setup, but it is impractical in our large-scale study.



Modeling Graphs Beyond Hyperbolic 11

size in the grid search from Morris et al. [29]. We report the mean accuracy and
standard deviation of graph classification results under 10 runs, and provide
training details in Appendix [A]

Results. Figure[5]shows the accuracy results of a graph classification task in three
geometries across five datasets on five GNNs, see also Table [§ Figure [ shows
the distribution of §-hyperbolicity over instances. We see that SPDg achieves
better or similar accuracy than its counterparts of the same dimenison in all
cases except Cheb on COX2 and GIN on ENZYMES. On the AIDS dataset,
SPD achieves much better accuracy across all GNNs, and on ENZYMES SPD
achieves much better accuracy on SGC.

We also observe that hyperbolic space does not yield much increased accuracy
over Euclidean space in most cases, except the AIDS data set. Furthermore,
SPD significantly outperforms hyperbolic space on the AIDS dataset but not
the COX2 data set. Both of these datasets have the property that almost all
instances are tree-like (6 < 1) (see Figure @, but the hyperbolicity constants are
less concentrated in the AIDS dataset than in the COX2 dataset. It is possible that
the flexibility of SPD explains the increased performance over hyperbolic space
in this case. For example, SPD admits totally geodesic submanifolds isometric to
hyperbolic spaces of varying constant curvatures. It would be interesting to find
out, for example, if these graphs of different hyperbolicity constants stay near
copies of hyperbolic space of different curvatures.

—— Buclidean Hyperbolic ~ —— SPD —— Buclidean Hyperbolic ~ —— SPD —— Buclidean Hyperbolic  —— SPD — Eudlidean Hyperbolic  —— SPD

(a) COX2 (b) AIDS (¢) ENZYMES (d) PROTEINS

Fig. 5. Evaluation of five graph neural networks with LINEAR-XE on four graph
classification datasets in the three 36-dimensional spaces: R3®, H3¢ and SPDs.

5.3 Analysis

Class Separation. Figure [7] shows a visualization of node embeddings obtained
from the final layer of SGConv on Cora. In each space, we vectorize node
embeddings, and then use PCA to extract the top 3 dimensions. We then look
at the projections to that 3-dimensional space by further projecting to the x-y,
y-z, and x-z planes. For instance, the x-y plane is the projection to the top 2
dimensions of PCA. The x-x, y-y and z-z planes show the informativeness of each
dimension in terms of class separation.
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Fig. 6. Distributions of d-hyperbolicity on four graph classification datasets, where
each instance consists of one graph. Y-axis shows the number of graphs for a given
d-hyperbolicity on X-axis.

Figure [7] (a) depicts the case when the ambient geometry is Euclidean. In
this example, nodes from the pink, blue and green classes are well-separated
but the nodes in red and orange cannot be easily distinguished. Figure El (b)
depicts the case when the nodes are embedded in the Poincaré ball model of
hyperbolic space. In the x-z plane five classes are well-separated, including the red
and orange classes. Figure 7| (c) depicts the case when the nodes are embedded
into SPD where the best class separation is achieved. Indeed, the Cora graph
has hyperbolicity constant § = 11, so one cannot expect it to embed well into
hyperbolic space.

- [ - ] 0 5 3 3
X Y 7 X z X Y z

(c) SPD space

(a) Euclidean space (b) Hyperbolic space

Fig. 7. Vizualizations of the node embeddings into three 6-dimensional geometries for
SGC on the Cora dataset. In each space, the nodes are vectorized and then projected
linearly to R® via PCA.

Training Time. As a case study on the impact of the choice of the latent space
geometry on the training time of GNN models, Figure [§] compares the training
efficiency of three graph neural networks on Citeseer across three 6-dimensional
manifolds: RS, HY, and SPD3. Overall, we see that models with Euclidean latent
spaces needed the least amount of training time, but produced the lowest accuracy.
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Moreover, hyperbolic space slows down the training in Euclidean space by up to
four times, and the effect on accuracy is either slightly positive or negative. For
instance, using hyperbolic space with the SGC architecture only brought small
accuracy improvements, while applying it to GCN resulted in a drop in accuracy.
On the other hand, even though SPD models require nearly double the training
time of hyperbolic models, the SPD models bring big improvements in accuracy,
not only on Citeseer in the current study case, but also on many datasets such
as AIDS and PROTEINS (see Figure . We note that the longer training times
for SPD models can be attributed to the involvement of eigendecompositions.
However, the benefits of using SPD space in graph neural networks appear to
outweigh this drawback.

709

GCN i scc
65 % | f + GAT
YO\ ; T
GON, GbN G

st SGC
60 4

Accuracy on Test Set (percent)

& Euclidean O | Hyperbolic A SPD

5 10 15 20 25 30
Training Time (seconds)

Fig. 8. Evaluation of three 6-dimensional spaces across graph neural networks in terms
of training time and accuracy on Citeseer (§ = 5.0). Each point has a unique pattern
that combines color and shape. For instance, a red triangular means GCN in SPD.

Classifiers. Our three classification layers are built upon traditional classification
methods. LINEAR-XE and SVM-MM are both linear classifiers that separate
classes with hyperplanes, differing in the choice of loss functions: cross-entropy
and multi-margin loss. In contrast, NC-MM layer learns class-specific centroids
and then determining the class of an unlabeled node (or graph) by examining
which centroid it is closest to according to a similarity function.

Table 2] shows the usefulness of our classifiers in SPD on Citesser and Cora.
Overall, we see that the MM-based classifiers (SVM-MM and NC-MM) are
often helpful, outperforming LINEAR-XE in SPD, and when they succeed, their
improvements are substantial. This means the benefits of using SPD and these
advanced classifiers are complementary, resulting in stacked performance gains.
This is an important finding as it hints at the possibility of accommodating
more advanced classification methods recently developed in Euclidean space,
when constructing graph neural networks in SPD. Note that the results on other
datasets are similar, which we present in Appendix [D] and [E}
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Table 2. Comparison of different classifiers on Citeseer (top) and Cora (bottom). We
bold the best accuracy in each row.

RS SPD3
LIN-XE | LIN-XE SVM-MM NC-MM

GIN |48.2 + 6.3]68.0 + 1.3 67.3 £ 1.2 67.0 £ 0.8
SGC |62.6 + 3.4/69.4 + 1.0 69.7 £ 0.8 67.9 £ 1.5
Cheb|63.2 + 2.154.6 + 10.4 61.4 + 4.4 64.0 + 2.3
GAT|55.0 + 5.2/ 67.3 + 1.7 69.2 + 0.7 68.1 + 1.1
GCN|64.7 + 2.3]69.9 + 0.8 69.2 + 0.8 68.2 £ 1.0

GIN |77.1 £ 1.0/79.9 £ 0.6 79.5 £ 0.6 788 + 1.0
SGC |75.7 + 3.6/ 81.5 + 0.9 81.8 + 0.3 81.1 + 0.6
Cheb|71.9 + 2.8/ 75.5 £ 39 77.9 £24 79.2 + 1.3
GAT|67.9 + 4.2/ 79.4 + 09 81.2 + 1.4 81.2 +1.1
GCN|78.1 +£ 1.7/ 79.7 £ 0.9 80.7 + 0.5 80.2 + 1.3

6 Conclusions

This work brings sophisticated geometric tools to graph neural networks (GNNs).
Following the maxim ‘complex data requires complex geometry’, we leverage the
flexibility of the space of symmetric positve definite (SPD) matrices to construct
GNNs which do not require careful prior knowledge of graph topologies. This is a
distinct advantage over familiar spaces such as Euclidean, spherical or hyperbolic
geometries, where only narrow classes of graphs embed with low distortion.

To operate GNNs in SPD, we designed several building blocks, and developed
a library (SPD4GNN) that enables training five popular GNNs in SPD, Euclidean
and hyperbolic spaces. Our results confirm the strong connection between graph
topology and embedding geometry: GNNs in SPD provide big improvements on
graph datasets with multi-modal structures, with their counterparts in hyperbolic
space performing better on strictly tree-like graphs.

Determining the optimal classifier for training GNNs in the complex geometry
of SPD is challenging, and presents an avenue for continued improvement. This
work only begins the process of designing geometrically meaningful classifiers
and identifying the conditions which guarantee good performance. Additional
performance gains may come through careful implementation of the computa-
tionally demanding functions in SPD. While this work contains techniques for
accelerating computations in SPD, further optimization is likely possible.

Constructing tools to aid the interpretability of SPD embeddings is an impor-
tant direction of future work, including quantitative measures for (a) comparing
the geometry of the learned embeddings to the real-world graphs’ topology and
(b) understanding how the geometric features of SPD are leveraged in for graph
tasks. While the results of this current work suggest some of SPD’s superior
performance may be due to graphs of varying hyperbolicity finding geometric
subspaces optimally adapted to their curvature, such measures would enable the
precise quantitative analysis required for verification.
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7 Ethical Considerations

We have not identified any immediate ethical concerns such as bias and dis-
crimination, misinformation dissemination, privacy issues, originating from the
contributions presented in this work. However, it is important to note that our
SPD models use computationally demanding functions, such as determining
eigenvalues and eigenvectors, which may incur a negative environmental impact
due to increased energy consumption. Nevertheless, SPD models do not outsuffer
Euclidean and hyperbolic counterparts in terms of computational overhead. This
is because Euclidean and hyperbolic models would require substantial computing
resources when dealing with larger dimensions, a necessity for compensating for
the challenges of embedding complex graphs into these ill-suited spaces.
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A Training Details

For both node and graph classification, we use grid search to tune the same
set of hyperparameters for each graph architecture on the development set of
a given dataset, and repeat the tuning process three times over Euclidean and
hyperbolic spaces, the product of thereof, and the SPD space. We consider 5
hyperparameters: (a) learning rate € {0.1,0.01,0.001}; (b) dropout € {0,0.5};
(c) weight-decay € {0,0.005,0.0005} used to regularize a model by shrinking the
L2 norm of model weights; (d) nonlinearity € {TgReEig, ReEig} only used for
the SPD spaceﬂ and (e) C € {0.5,0.05,0.005,0.0005} used to control the size
of SVM hyperplane. For node classification, we follow Chami et al. [I1] and set
batch size to a total number of graph nodes in a dataset. We train individual
graph architectures for a maximum of 500 epochs, and stop training when the
loss on the development set has not decreased for 200 epochs. Regarding graph
classification, We set batch size to 32, and set the epochs to a maximum of 200
for training, accompanied by a patience of 100 epochs for early stopping. In all
setups, we use a stack of two graph layers that perform message passing twice at
each iteration.

For optimization, considering the model parameters of SPD graph neural
networks are in Euclidean space, we use Adam optimizer [23] to tune these
parameters, and minimize (a) the cross-entropy loss for linear classifier and
(b) the multi-margin hinge loss for both SVM and centriod-based classifiers.
Notably, our graph neural networks in SPD take longer time to train than the
Euclidean and hyperbolic counterparts due to the requirement of computing
costly eigenvalues and eigenvectors at each iteration. We choose Euclidean over
Riemannian optimization, as the latter cannot guarantee the symmetry positive
definiteness in SPD matrices, a potential risk incurring numerical instability.

B Graph Architectures
Unlike GCN, GAT and Cheb, SGC and GIN both compute propagation ahead

of applying feature transformation. We contrast their architectures in different
spaces in Table

C Dataset Statistics

Table [] and [5] present data statistics for the benchmark datasets in node and
graph classification setups.

D Results in Node Classification

Table [6] shows a detailed breakdown of results for node classification.

5 In Euclidean and hyperbolic cases, we apply ReLU to Euclidean space and to the
tangent space of hyperbolic manifold, as suggested by Chami et al. [11].
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Table 3. Comparison of operations over two graph neural networks (SGC and GIN) in
different spaces.

Operations ‘GNNS‘ Euclidean Space
. _ -1
Propagation SGC hll ZJEN( ) 24 ZZEN(]) k],zxi
GIN |hl = (1 +e)x! +de/\/<z)kux
Feature Transformation‘ All ‘ pt = Winl
Bias&Nonlinearity ‘ All ‘ zt = p(pt + b
Operations ‘GNNS‘ Hyperbolic and SPD Space
1 o ‘ -1
Propagation SGC ZQ = XP(2jeno k;leZGN(j) ks« log 22 1)71
GIN |Q; = exp((1 +€)log Z;7" + >, niy ki log Z;77)
Feature Transformation‘ All ‘ Pl=M® Qifl
Bias&Nonlinearity | All | Zt = ¢(P! & BY

Table 4. Dataset statistics for node classification.

Dataset # Nodes # Edges # Classes # Features

Cora 2,708 5,429 7 1,433
Citeseer 3,327 4,732 6 3,703
Pubmed 19,717 44,338 3 500
Disease 1,044 1,043 2 1,000
Airport 3,188 18,631 4 4

E Results in Graph Classification

Table [§] shows a detailed breakdown of results for graph classification.

F Hitchhiker’s Guide to Numerical Problems

Unlike Euclidean space, computing work in SPD does not utilize matrix multi-
plication, but rather relies on the use of gyrocalculus and algebraic operations
in symmetric space. However, these operations may incur numerical instability.
In what follows we present a list of numerical issues identified in this work, and
provide solutions to address them.

Repeated Figenvalues. GNNs in SPD extensively utilize logmap and expmap to
switch the space of node embeddings between SPD and the space of symmetric
matrices. Doing this requires the determination of the orthogonal basis and
eigenvalues of an SPD matrix (or a symmetric matrix). However, when eigenval-
ues are not unique, the orthogonal basis is not well-defined, i.e., any vector in
the eigenspace associated to a repeated eigenvalue is a legitimate eigenvector.
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Table 5. Dataset statistics for graph classification. # Nodes and # Edges denote the
number of nodes and edges on average across graphs.

Dataset # Graphs # Nodes # Edges # Classes # Features

ENZYMES 600 32.6 124.3 6 3
PROTEINS 1,113 39.1 145.6 2 3
COX2 467 41.2 43.4 2 35
AIDS 2,000 15.6 16.2 2 38

This could incur the reproducibility issue as an orthogonal basis could be de-
termined differently across machines, libraries, and even multiple runs. Further,
the gradients of eigenvectors in the degenerate case are not well-supported in
popular libraries such as Pytorch—where the gradients are stable only when the
corresponding eigenvalues are unique. We address this issue by adding a random
noise following a normal distribution with zero mean and the standard deviation
of 0.001 to both SPD and symmetric matrices.

Non-positive definiteness of Node Embeddings. Machinery computing typically
involves the use of imprecise floating-point systems to compute and represent
numbers, particularly efficient to compute but prone to round-off and truncation
errors, such as representing an irrational number approximately with a finite
amount of decimals. These errors could affect the positive-definiteness of node
embeddings by yielding symmetric matrices with slightly negative eigenvalues.
When node embeddings are no longer in SPD, a great number of algebraic SPD
operations becomes numerical unstable, such as computing the geodesic distance
between two points in SPIJZ], mapping points from SPD to the tangent space at a
given point, computing gyro-addition. To this end, we take a two-step process: (a)
enabling double precision floating-point format in computing, and (b) clamping
eigenvalues to ensure them being positive.

Library Issue. Popular libraries such as Pytorch have struggled to efficiently
compute eigenvectors and eigenvalues for long. We benchmarked the running
time of two factorization algorithms in Pytorch: (a) finding the eigenvectors and
eigenvalues via eigenvalue decomposition and (b) finding the singular vectors
and values via singular value decomposition (SVD) of 5,000 symmetric matrices
with the size of 8 x 8. We found that eigenvalue decomposition was 15 times
slower to run than SVD. For that reason, we utilize SVD coupled with a sign
correction to compute eigenvectors and eigenvalues. We found that our solution
is faster than the Pytorch in-house eigenvalue decomposition by approximately
12 times. In June 2022, Pytorch released an update that finally improved the
speed of computing eigenvectors and eigenvalues.

" For instance, computing geodesic distance requires taking the square root of eigen-
values. In this case, numerical instability arises as eigenvalues are negative.
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Table 6. Evaluation of different GNN architectures with different classifiers in the
three 6-dimensional spaces, namely R°, H® SPD(3,R), in the node classification task.
We bold the best accuracy in each row.

RS HS SPD(3,R)
LINEAR-XE| LINEAR-XE | LINEAR-XE SVM-MM NC-MM
GINConv [86.4 £+ 6.9/ 95.5 £ 0.9 | 91.0 + 3.0 95.0 £ 0.9 89.4 £+ 4.6
SGConv |87.6 +£2.9/99.9 £ 0.1 93.9 + 2.2 958+ 1.0 93.9 + 1.3
Disease |ChebConv|52.4 + 3.9| 53.5 4+ 3.8 | 53.6 £ 3.4 58.9 4+ 3.7 61.4 + 5.5
GATConv [92.2 £+ 8.1|/100.0 £+ 0.0 98.1 + 2.4 99.6 £ 0.8 93.7 £ 2.6
GCNConv|[88.2 +£ 3.1/ 96.9 £ 0.6 | 95.9 + 2.1 96.0 £ 1.9 96.8 £ 1.7
GINConv [55.4 £+ 3.8| 65.9 + 4.5 | 66.3 & 5.1 68.6 £ 3.0 74.1 4+ 2.6
SGConv [62.7 £ 1.6| 74.8 £ 2.8 | 68.1 & 3.0 64.9 £ 3.5 71.0 £ 3.1
Airport [ChebConv|68.7 £+ 3.6| 67.6 + 2.6 | 74.7 £ 3.1 71.7 + 1.6 75.3 + 3.2
GATConv [65.6 £ 4.3| 77.0 £ 3.3 |74.1 £ 1.5 69.8 £ 2.2 744 £ 2.1
GCNConv|61.7 £ 2.2| 68.6 + 1.4 |71.2 + 2.3 63.4 £ 3.4 71.0 £ 1.8
GINConv |71.2 £ 49| 76.8 + 1.0 |77.5 £ 0.6 77.0 £ 1.1 76.9 £ 0.8
SGConv |70.8 £ 3.7| 77.8 + 0.8 |78.3 £ 0.5 78.1 £ 0.6 77.9 £ 0.6
Pubmed|ChebConv|74.5 + 3.6 65.1 + 12.3| 76.8 £ 3.0 78.0 + 0.8 77.6 £ 0.9
GATConv |74.7 + 3.4| 775 £ 1.6 | 77.8 £ 0.6 77.2 £ 2.1 78.1 £ 0.5
GCNConv|77.3 £ 1.5| 76.9 + 0.5 | 78.0 & 0.6 78.2 £ 0.7 78.6 + 0.7
GINConv [48.2 £+ 6.3| 64.1 + 1.6 |68.0 £ 1.3 67.3 £ 1.2 67.0 £ 0.8
SGConv [62.6 £ 3.4| 64.5 + 1.5 [ 69.4 + 1.0 69.7 + 0.8 67.9 £ 1.5
Citeseer |ChebConv|63.2 £+ 2.1| 41.8 + 5.8 [54.6 + 10.4 61.4 + 4.4 64.0 + 2.3
GATConv |55.0 + 5.2| 64.9 £ 1.7 | 67.3 £ 1.7 69.2 + 0.7 68.1 + 1.1
GCNConv |[64.7 £ 2.3| 64.0 &+ 3.1 [69.9 £+ 0.8 69.2 £ 0.8 68.2 £ 1.0
GINConv [63.2 £ 6.2 77.1 + 1.0 |79.9 £ 0.6 79.5 £ 0.6 78.8 £ 1.0
SGConv |75.7 £ 3.6| 77.5 + 1.5 | 81.5 + 0.9 81.8 + 0.3 81.1 £ 0.6
Cora ChebConv|71.9 + 2.8 43.9 + 3.9 | 75.5 £ 3.9 779 £ 2.4 79.2 + 1.3
GATConv |67.9 +4.2| 781 £ 1.1 | 794+ 0.9 81.2 +1.481.2 £ 1.1
GCNConv|78.1 + 1.7| 782 £ 1.3 | 79.7 + 0.9 80.7 + 0.5 80.2 + 1.3

G Classifiers

Linear-XE. First, we consider a linear classification layer. The layer maps an
input SPD matrix Z to its logarithm X = log(Z), vectorizes the upper triangle
elements of X as x = (X1 -+ X1.4, X229, -+ , Xg.4) € RUFTD/2 then applies a
linear transformation y = Wx, where W € RE*d(d+1)/2 ig 5 Jearnable parameter
matrix, and K is the number of classes. The model parameters are then trained
with a standard cross entropy loss objective applied to y. Finally, predictions are
made after training according to arg max;, yr with yi as the kth component of y.

SVM-MM. The second classification layer we consider is a modification of a
standard SVM approach. As before in the Linear-XE case, we begin by mapping
an input SPD matrix Z to its logarithim X = log(Z). Instead of vectorizing Z
and learning a linear transformation, in this case our implementations learns
linear functionals applied directly to X. This is done by identifying .S,, with its
dual space S via W — (X — Tr(WX)). The loss function then consists of a
standard multi-class hinge loss function and a regularization term, analogous to a
term proportional to A\|W|? in Euclidean space. Specifically, let C' = % Zf:;z X,
the arithmetic mean of the subset {X;}Y , in SPD,,, which is again in SPD,,.
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Table 7. Comparison between 6- and 15-dimensional spaces across five graph neural
networks and three geometries on Disease and Cora. All networks use the LINEAR-XE
classifier. We bold the best accuracy in each row.

| | R® R | H° H'®  |SPD(3,R) SPD(5,R)
GINConv [86.4 & 6.9 91.3 & 2.3 95.5 £ 0.9 96.3 £ 0.8 [91.0 + 3.0 93.2 £ 2.2
SGConv [87.6 £2.997.2 & 1.0/ 99.9 £ 0.1 99.9 + 0.1 (93.9 + 2.2 98.0 + 1.0
Disease|ChebConv|52.4 £ 3.9 51.1 & 2.6| 53.5 £ 3.8 53.7 £ 4.8 |53.6 + 3.4 52.9 + 4.7
GATConv [92.2 £ 8.1 97.0 = 3.9/100.0 £ 0.0 100.0 £ 0.0(98.1 & 2.4 99.9 + 0.2
GCNConv|88.2 £ 3.1 89.5 & 1.0/ 96.9 £ 0.6 97.8 £ 1.2 [95.9 + 2.1 96.0 + 3.3
GINConv [63.2 & 6.2 74.7 £ 1.8 77.1 £ 1.9 80.6 £ 0.8 [79.9 + 0.6 81.4 £ 0.3
SGConv |75.7 £ 3.6 80.7 £ 0.9| 77.5 £ 1.5 79.6 + 1.3 |81.5 + 0.9 82.1 £ 0.5
Cora  |ChebConv|71.9 + 2.8 76.7 & 1.3| 43.9 £ 3.9 50.5 £ 3.7 |75.5 + 3.9 80.3 + 1.0
GATConv [67.9 £ 4.2 74.7 £ 1.5/ 781 £ 1.1 80.3 £ 0.5 |79.4 + 0.9 79.8 + 1.0
GCNConv|78.1 £ 1.7 80.8 = 1.2| 78.2 £ 1.3 80.7 £ 0.8 |79.7 + 0.9 82.3 £ 0.5

Then the loss function we propose is

LosssvMm-Mm (X1, .-, XN Wh, ..., W)
K
=AY Tr(WiCWiC)+
=1
1 N K
i

i=1 k=1

max(0,1 — Tr(WiX;) + Tr(W; X))

gl

where ) is a hyperparameter. Predictions are made after training according to
argmax (X — Tr(WiX)).

NC-MM. Lastly, we consider a centroid-based layer for classifying K classes.
The layer is parametrized by K centroids {u}, € R¥4TD/2 K SPD matrices
{P}E_, c SPD(d(d +1)/2,R), and K bias terms {b;}*_; C R. Given an input
SPD matrix Z, the layer first maps Z to its logarithm X = log(Z), and then vec-
torizes the upper triangle elements of X as ¢ = (X11--- X1,4,X2,2, -+ , Xd,d) €
RA(d+1)/2 A centroid-based similarity value for each class k is then computed as
sim(z, ) = — 3 (2 —py) Py(z—px) T +bk. The model parameters are trained using
a standard multi-hinge loss objective applied to the feature vector (sim(z, uk))szl.
Finally, predictions are made after training according to arg max, sim(x, puy).

H Product Manifold

Let My, M, ..., M} be a sequence of smooth manifolds. The product manifold is
given by the Cartesian product M = M; X Ms x --- X M. Each point p € M
has the coordinates p = (p1,...,pk), with p; € M; for all i. Similarly, a tangent
vector v € T, M can be written as (v1,...,vy), with each v; € T, M;. If each M;
is equipped with a Riemannian metric g;, then the product manifold M can be
given the product metric where g(v,w) = Zle gi(vi, w;).
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Table 8. Evaluation of different GNN architectures with different classifiers in the
three 36-dimensional spaces, namely R3®, H®®, SPD(8,R), in the graph classification
task. We bold the best accuracy in each row.

R36 H36 SPD(8,R)
LINEAR-XE |LINEAR-XE|LINEAR-XE SVM-MM NC-MM
GINConv |80.0 + 2.5|79.8 &£ 2.1|81.7 + 1.9 78.7 £+ 2.5 82.8 & 3.0
SGConv |78.3 £ 1.8(78.1 +£4.0|(77.9 + 2.5 75.1 £ 1.9 79.8 + 3.5
COX2 ChebConv|84.5 + 1.3|75.1 + 1.3|79.6 &+ 3.5 78.7 + 3.5 85.3 + 2.9
GATConv |79.6 + 3.1(77.0 £ 3.7|79.1 &+ 2.0 78.7 £+ 0.0 81.7 &+ 2.5
GCNConv|79.1 + 2.8(81.1 £ 1.4|84.3 £ 1.9 74.9 + 1.2 77.7 + 4.0
GINConv |85.9 + 1.3|89.7 £ 0.6|95.8 + 1.2 92.3 + 1.4 92.3 + 2.6
SGConv |77.1 £ 0.8(84.2 £ 1.5(97.7 £ 0.9 94.0 &+ 1.1 92.5 + 0.7
AIDS ChebConv|88.3 £+ 5.8(86.0 & 1.7|94.6 + 1.0 93.0 = 4.6 944 +£ 1.6
GATConv | 77.2 + 2.2|84.2 £ 4.0/95.0 £+ 1.0 93.2 + 4.1 94.2 + 0.7
GCNConv|77.0 + 0.5(89.2 £ 1.2|96.2 + 0.4 93.1 + 1.8 91.8 + 0.8
GINConv |31.8 £+ 4.8|27.7 £ 5.9|27.2 + 4.1 29.3 + 6.9 31.2 + 6.1
SGConv 28.7 + 4.7(28.0 £ 3.2(39.5 + 5.1 37.2 +£ 4.4 41.5 + 2.6
ENZYMES |ChebConv|34.5 4 4.2(26.5 4+ 3.0|35.0 & 2.2 38.8 &+ 5.3 40.0 + 7.4
GATConv [31.8 + 5.4/29.2 4+ 3.8|30.0 + 3.1 29.3 £+ 3.2 29.5 £ 5.3
GCNConv|30.2 + 5.7(28.2 £+ 3.3|33.2 + 2.9 29.0 + 1.1 39.2 £ 3.2
GINConv |70.8 + 1.2|71.5 £ 0.8|74.4 +£ 1.2 72.3 &+ 2.4 73.0 + 1.6
SGConv |72.0 £ 1.0(72.0 £2.5(75.3 £ 1.7 74.6 £ 1.5 77.1 + 1.3
PROTEINS|ChebConv|68.6 + 1.1|72.3 & 0.9(73.9 + 2.0 75.1 = 1.6 74.9 £ 1.6
GATConv|70.6 &£ 0.9(72.0 &+ 3.3|72.0 £ 2.9 72.7 +£ 3.2 72.8 + 1.5
GCNConv|71.8 + 1.2|72.8 £ 1.2|74.7 =+ 0.9 743 + 1.2 75.2 £ 1.1

Application to Graph Neural Networks. We construct graph convolutional network

(GCN) in product manifold given by M = H™ x R™. Let Z} = (Z!,,2},) e M

be the embedding of the node i at the [ layer, with Z! 1 € H™ and Zf,2 € R™. In
the following, we implement three building blocks that enable GCN to operate
in product manifold.

— Feature transformation combines hyperbolic and linear maps to transform

each point Zf_l in M at each layer [, denoted by:

Wn W12>®(Z ) _ ((Wlll © Zzﬁl) ® (W1l2 © exp(Zf;

Q= Wezt = (
W21 W22

Where Wl-lj € GL(m,R) for all i j (with learnable weights adjusted to
match training data), Q) = (Q!,Q},) € H™ x R™, & is Mdbius addition,
exp and log are the mappings between hyperbolic space and its tangent
space, and ® is hyperbolic matrix multiplication, denoted by W7, ® foll =

Zi,2 W3, IOg(Zf,;l) + Wézzf,gl

exp(W}, log(foll)) for example.
Propagation aggregates information from all the neighbors N (i) of a given
node 7, with k; ; as the weight for node 7 and j:

P! = (exp( Z ki ; log(Q 31 Z k,]Q

JEN(9) JEN

1)))
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1o
Where P} = (P},,P},) € H™ x R™, and k;; = ¢; *¢; ® with ¢; as the

K3
cardinality of N (z).
— Bias and Non-linearity adds the biases to the propagation results followed

by applying two non-linear functions:

%

Zl= (@1(Pil,1 @ BY), <P2(Pil,2 + BY))

Where ¢1 : @ — exp(ReLU(log(x)), 2 :  — ReLU(z), @ is Mdbius addition,
and B} € H™ and B, € R™ are learnable bias weights.

Results. Table [9] compares product space with SPD, Euclidean and hyperbolic
spaces. Results show that the product space H? x R? considerably underperforms
SPD3, despite both combining Euclidean and hyperbolic subspaces. Furthermore,
the product space performs worse than the Euclidean and hyperbolic counterparts
(RS and H®) on non-hyperbolic datasets including Pubmed, Citeseer and Cora.

This matches the mathematical expectation that SPD, which combines Eu-
clidean and hyperbolic features in a more intricate way than product manifolds,
has a higher representation capacity, even though both classes of spaces exhibit
mixed curvature. For that reason, SPD more readily accommodates a wider
variety of graph data.

Table 9. Comparison to the product space (H3 X RS) for node classification. Results
are from GCNConv coupled with Linear-XE.

|Disease § = 0] Airport § = 1|Pubmed § = 3.5|Citeseer § = 5|Cora § = 11

RG‘ 88.2 £ 3.1 61.7 + 2.2 773 £ 15 64.7 + 2.3 78.1 £ 1.7
HE 96.9 + 0.6 [68.6 £ 1.4 76.9 £ 0.5 64.0 + 3.1 782 £ 1.3
SPD3 [95.9 £ 2.1 71.2 + 2.3 78.0 £ 0.6 69.9 £ 0.8 79.7 £ 0.9

H? x R%|95.9 £ 0.9 [68.1 £4.7 [74.7+ 1.9 62.2 + 1.7 71.8 + 4.6
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