Skip to main content

Neural Class Expression Synthesis in \(\mathcal {ALCHIQ(D)}\)

  • Conference paper
  • First Online:
Machine Learning and Knowledge Discovery in Databases: Research Track (ECML PKDD 2023)

Abstract

Class expression learning in description logics has long been regarded as an iterative search problem in an infinite conceptual space. Each iteration of the search process invokes a reasoner and a heuristic function. The reasoner finds the instances of the current expression, and the heuristic function computes the information gain and decides on the next step to be taken. As the size of the background knowledge base grows, search-based approaches for class expression learning become prohibitively slow. Current neural class expression synthesis (NCES) approaches investigate the use of neural networks for class expression learning in the attributive language with complement (\(\mathcal {ALC}\)). While they show significant improvements over search-based approaches in runtime and quality of the computed solutions, they rely on the availability of pretrained embeddings for the input knowledge base. Moreover, they are not applicable to ontologies in more expressive description logics. In this paper, we propose a novel NCES approach which extends the state of the art to the description logic \(\mathcal {ALCHIQ(D)}\). Our extension, dubbed NCES2, comes with an improved training data generator and does not require pretrained embeddings for the input knowledge base as both the embedding model and the class expression synthesizer are trained jointly. Empirical results on benchmark datasets suggest that our approach inherits the scalability capability of current NCES instances with the additional advantage that it supports more complex learning problems. NCES2 achieves the highest performance overall when compared to search-based approaches and to its predecessor NCES. We provide our source code, datasets, and pretrained models at https://github.com/dice-group/NCES2.

This work has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant No 860801 and the European Union’s Horizon Europe research and innovation programme under the grant No 101070305. This work has also been supported by the Ministry of Culture and Science of North Rhine-Westphalia (MKW NRW) within the project SAIL under the grant No NW21-059D and by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation): TRR 318/1 2021 – 438445824.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    These metrics are only used during training. When comparing NCES2 to state-of-the-art approaches on class expression learning on the test sets, we use metrics based on the number of covered/ruled-out positive/negative examples for all approaches.

  2. 2.

    https://www.semanticbible.com/ntn/ntn-overview.html.

  3. 3.

    Positive examples are instances of the class expression while negative examples are the rest of the individuals in \(\mathcal {N}_I\).

  4. 4.

    https://github.com/dice-group/NCES2/blob/main/supplement_material.pdf.

  5. 5.

    https://github.com/dice-group/NCES2.

References

  1. Auer, S., Bizer, C., Kobilarov, G., Lehmann, J., Cyganiak, R., Ives, Z.: DBpedia: a nucleus for a web of open data. In: Aberer, K., et al. (eds.) ASWC/ISWC -2007. LNCS, vol. 4825, pp. 722–735. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-76298-0_52

    Chapter  Google Scholar 

  2. Bergstra, J., Bengio, Y.: Random search for hyper-parameter optimization. J. Mach. Learn. Res. 13, 281–305 (2012)

    MathSciNet  MATH  Google Scholar 

  3. Bin, S., Bühmann, L., Lehmann, J., Ngonga Ngomo, A.C.: Towards sparql-based induction for large-scale RDF data sets. In: ECAI 2016, pp. 1551–1552. IOS Press (2016)

    Google Scholar 

  4. Bin, S., Westphal, P., Lehmann, J., Ngonga, A.: Implementing scalable structured machine learning for big data in the sake project. In: 2017 IEEE International Conference on Big Data (Big Data), pp. 1400–1407. IEEE (2017)

    Google Scholar 

  5. Bordes, A., Glorot, X., Weston, J., Bengio, Y.: A semantic matching energy function for learning with multi-relational data - application to word-sense disambiguation. Mach. Learn. 94(2), 233–259 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bordes, A., Usunier, N., García-Durán, A., Weston, J., Yakhnenko, O.: Translating embeddings for modeling multi-relational data. In: NIPS, pp. 2787–2795 (2013)

    Google Scholar 

  7. Bühmann, L., Lehmann, J., Westphal, P.: Dl-learner-a framework for inductive learning on the semantic web. J. Web Semant. 39, 15–24 (2016)

    Article  Google Scholar 

  8. Chen, M., Zaniolo, C.: Learning multi-faceted knowledge graph embeddings for natural language processing. In: IJCAI, pp. 5169–5170 (2017)

    Google Scholar 

  9. Cho, K., van Merrienboer, B., Bahdanau, D., Bengio, Y.: On the properties of neural machine translation: encoder-decoder approaches. In: SSST@EMNLP, pp. 103–111. Association for Computational Linguistics (2014)

    Google Scholar 

  10. Dai, Y., Wang, S., Xiong, N.N., Guo, W.: A survey on knowledge graph embedding: approaches, applications and benchmarks. Electronics 9(5), 750 (2020)

    Article  Google Scholar 

  11. Demir, C., Ngomo, A.-C.N.: Convolutional complex knowledge graph embeddings. In: Verborgh, R., et al. (eds.) ESWC 2021. LNCS, vol. 12731, pp. 409–424. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-77385-4_24

    Chapter  Google Scholar 

  12. Dong, X., Yu, Z., Cao, W., Shi, Y., Ma, Q.: A survey on ensemble learning. Front. Comput. Sci. 14(2), 241–258 (2020)

    Article  Google Scholar 

  13. Fanizzi, N., d’Amato, C., Esposito, F.: DL-FOIL concept learning in description logics. In: Železný, F., Lavrač, N. (eds.) ILP 2008. LNCS (LNAI), vol. 5194, pp. 107–121. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-85928-4_12

    Chapter  Google Scholar 

  14. Heindorf, S., et al.: Evolearner: learning description logics with evolutionary algorithms. In: WWW, pp. 818–828. ACM (2022)

    Google Scholar 

  15. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

  16. Konev, B., Ozaki, A., Wolter, F.: A model for learning description logic ontologies based on exact learning. In: AAAI, pp. 1008–1015. AAAI Press (2016)

    Google Scholar 

  17. Kouagou, N.J., Heindorf, S., Demir, C., Ngomo, A.N.: Learning concept lengths accelerates concept learning in ALC. In: Groth, P., et al. (eds.) ESWC 2022. LNCS, vol. 13261, pp. 236–252. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-06981-9_14

    Chapter  Google Scholar 

  18. Kouagou, N.J., Heindorf, S., Demir, C., Ngonga Ngomo, A.C.: Neural class expression synthesis. In: Pesquita, C., et al. (eds.) ESWC 2023. LNCS, vol. 13870, pp. 209–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-33455-9_13

    Chapter  Google Scholar 

  19. Krech, D.: RDFlib: a Python library for working with RDF (2006). https://github.com/RDFLib/rdflib

  20. Lee, J., Lee, Y., Kim, J., Kosiorek, A., Choi, S., Teh, Y.W.: Set transformer: a framework for attention-based permutation-invariant neural networks. In: International Conference on Machine Learning, pp. 3744–3753. PMLR (2019)

    Google Scholar 

  21. Lehmann, J.: Dl-learner: learning concepts in description logics. J. Mach. Learn. Res. (2009)

    Google Scholar 

  22. Lehmann, J.: Learning OWL Class Expressions, vol. 22. IOS Press, Amsterdam (2010)

    Google Scholar 

  23. Lehmann, J., Auer, S., Bühmann, L., Tramp, S.: Class expression learning for ontology engineering. J. Web Semant. (2011)

    Google Scholar 

  24. Lehmann, J., Hitzler, P.: Concept learning in description logics using refinement operators. Mach. Learn. 78 (2010)

    Google Scholar 

  25. Lehmann, J., Völker, J.: Perspectives on Ontology Learning, vol. 18. IOS Press, Amsterdam (2014)

    Google Scholar 

  26. Nagypál, G.: History ontology building: the technical view. Human. Comput. Cult. Herit. 207 (2005)

    Google Scholar 

  27. Nardi, D., Brachman, R.J., et al.: An introduction to description logics. In: Description Logic Handbook, vol. 1 (2003)

    Google Scholar 

  28. Nickel, M., Tresp, V., Kriegel, H.: Factorizing yago: scalable machine learning for linked data. In: Proceedings of WWW (2012)

    Google Scholar 

  29. Ozaki, A.: Learning description logic ontologies: five approaches. where do they stand? KI-Künstliche Intelligenz (2020)

    Google Scholar 

  30. Rizzo, G., Fanizzi, N., d’Amato, C.: Class expression induction as concept space exploration: from dl-foil to dl-focl. Future Gener. Comput. Syst. (2020)

    Google Scholar 

  31. Sagi, O., Rokach, L.: Ensemble learning: a survey. Wiley Interdisc. Rev. Data Min. Knowl. Discov. 8(4), e1249 (2018)

    Article  Google Scholar 

  32. Sarker, M.K., Hitzler, P.: Efficient concept induction for description logics. In: Proceedings of AAAI (2019)

    Google Scholar 

  33. Schmidt-Schauß, M., Smolka, G.: Attributive concept descriptions with complements. Artif. Intell. 1–26 (1991)

    Google Scholar 

  34. Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.: Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 15(1), 1929–1958 (2014)

    MathSciNet  MATH  Google Scholar 

  35. Tran, T.L., Ha, Q.T., Hoang, T.L.G., Nguyen, L.A., Nguyen, H.S.: Bisimulation-based concept learning in description logics. Fund. Inform. 133(2–3), 287–303 (2014)

    MathSciNet  MATH  Google Scholar 

  36. Wang, Q., Mao, Z., Wang, B., Guo, L.: Knowledge graph embedding: a survey of approaches and applications. IEEE Trans. Knowl. Data Eng. (2017)

    Google Scholar 

  37. Wang, Z., Li, J., Liu, Z., Tang, J.: Text-enhanced representation learning for knowledge graph. In: Proceedings of IJCAI (2016)

    Google Scholar 

  38. Westphal, P., Bühmann, L., Bin, S., Jabeen, H., Lehmann, J.: SML-bench-a benchmarking framework for structured machine learning. Semant. Web 10(2), 231–245 (2019)

    Article  Google Scholar 

  39. Wu, Y., Schuster, M., Chen, Z., et al.: Google’s neural machine translation system: bridging the gap between human and machine translation. arXiv preprint arXiv:1609.08144 (2016)

  40. Xie, R., Liu, Z., Jia, J., Luan, H., Sun, M.: Representation learning of knowledge graphs with entity descriptions. In: Proceedings of AAAI (2016)

    Google Scholar 

  41. Yang, B., Yih, S.W.t., He, X., Gao, J., Deng, L.: Embedding entities and relations for learning and inference in knowledge bases. In: Proceedings of the International Conference on Learning Representations (ICLR) 2015 (2015)

    Google Scholar 

  42. Zaheer, M., Kottur, S., Ravanbakhsh, S., Poczos, B., Salakhutdinov, R.R., Smola, A.J.: Deep sets. In: Advances in Neural Information Processing Systems, vol. 30 (2017)

    Google Scholar 

  43. Zhang, F., Yuan, N.J., Lian, D., Xie, X., Ma, W.Y.: Collaborative knowledge base embedding for recommender systems. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 353–362 (2016)

    Google Scholar 

  44. Zhang, J., He, T., Sra, S., Jadbabaie, A.: Why gradient clipping accelerates training: a theoretical justification for adaptivity. arXiv preprint arXiv:1905.11881 (2019)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N’Dah Jean Kouagou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kouagou, N.J., Heindorf, S., Demir, C., Ngonga Ngomo, AC. (2023). Neural Class Expression Synthesis in \(\mathcal {ALCHIQ(D)}\). In: Koutra, D., Plant, C., Gomez Rodriguez, M., Baralis, E., Bonchi, F. (eds) Machine Learning and Knowledge Discovery in Databases: Research Track. ECML PKDD 2023. Lecture Notes in Computer Science(), vol 14172. Springer, Cham. https://doi.org/10.1007/978-3-031-43421-1_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-43421-1_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-43420-4

  • Online ISBN: 978-3-031-43421-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics