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Abstract. Despite numerous successes in Deep Reinforcement Learn-
ing (DRL), the learned policies are not interpretable. Moreover, since
DRL does not exploit symbolic relational representations, it has diffi-
culties in coping with structural changes in its environment (such as
increasing the number of objects). Relational Reinforcement Learning,
on the other hand, inherits the relational representations from symbolic
planning to learn reusable policies. However, it has so far been unable to
scale up and exploit the power of deep neural networks. We propose Deep
Explainable Relational Reinforcement Learning (DERRL), a framework
that exploits the best of both — neural and symbolic worlds. By resort-
ing to a neuro-symbolic approach, DERRL combines relational repre-
sentations and constraints from symbolic planning with deep learning to
extract interpretable policies. These policies are in the form of logical
rules that explain how each decision (or action) is arrived at. Through
several experiments, in setups like the Countdown Game, Blocks World,
Gridworld, and Traffic, we show that the policies learned by DERRL can
be applied to different configurations and contexts, hence generalizing to
environmental modifications.

Keywords: Neuro-Symbolic Al - Relational Reinforcement Learning -
Deep Reinforcement Learning, Explainability.

1 Introduction

Deep Reinforcement Learning (DRL) [2] has gained great success in many do-
mains. However, so far, it has had limited success in relational domains, which are
typically used in symbolic planning [40]. In the prototypical blocks world game
(Figure 1), one goal is to place block a on block b. An obvious plan for achieving
this is to unstack the blocks until both blocks a and b are at the top, upon which
block a can be moved atop block b. Standard DRL approaches struggle to adapt
to out-of-domain data, such as placing block ¢ on d, or applying the learned
strategies to changes in the stack size or the number of stacks, thus failing to
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Fig. 1: Learned rules in all environments. [Row 1]left to right. Countdown Game:
select operations (addition, subtraction, null) to make accumulated = target;
Blocks World: place a specific block on another; DoorKey: unlock a door with a
matching key to reach a goal. [Row 2| Traffic: minimize traffic at grid intersec-
tions. The figure shows a 5-agent grid with intersections 0 and 1 connected by
lane a; Gridworld: navigate a grid to reach the goal. Descriptions in Section

learn generalized policies. Furthermore, the black-box nature of the learned poli-
cies makes it difficult to interpret action choices, especially in domains involving
transparency and safety [33/47/22]. Understanding a machine’s decision-making
is crucial for human operators to eliminate irrational reasoning [5IJI7].
Relational Reinforcement Learning (RRL) [7I49] combines symbolic planning
and reinforcement learning and has origins in Statistical Relational Al and In-
ductive Logic Programming (ILP) [39/5]. RRL uses logic programs to represent
interpretable policies that are similar to symbolic planning languages [TTIT6UT5].
These policies use relations and objects, rather than specific states and actions,
allowing agents to reason about their actions at a higher level of abstraction, and
applying the learned knowledge to different situations. Earlier RRL approaches
were purely symbolic [7J6I26I38], searching policy spaces guided by performance
estimates, but did not exploit deep learning advancements and were not robust
to noisy data. Recent approaches [56] use neural networks for scalability and
improved internal representations, but learned policies are not human-readable.
We introduce Deep Explainable Relational Reinforcement Learning (DERRL:
neural DRL + symbolic RRL), a neuro-symbolic RRL approach that combines
the strengths of neural (differentiability and representational power) and sym-
bolic methods (generalizability and interpretability) while addressing their re-
spective shortcomings. More specifically, DERRL uses a neural network to search



Title Suppressed Due to Excessive Length 3

the space of policies represented using First-Order Logic (FOL)-based rulesﬂ
Like other ILP methods, our framework provides interpretable solutions. How-
ever, instead of using search-based methods, we leverage the representational
capacity of neural networks to generate interpretations of actions (called rules),
while entirely bypassing the need to interpret the network itself. To be spe-
cific, we propose a parameterized rule generation framework where a neural
network learns to generate a set of generalized discriminative rules that are
representations of the policy. For instance, as shown in the blocks world ma-
nipulation game in Figure [T} the two rules corresponding to move action are —
move(X,Y) + top(X),on(X, Z),isFloor(Y), which triggers an unstacking pro-
cess, and move(X,Y) « top(X),top(Y), goal _on(X,Y’), which puts block a on
b when both are top blocks in the stacks. Note, that the same rules are applicable
for a new goal (say goal on(c,d)) or when blocks are increased to 10.
Additionally, we formulate a semantic loss [53] to guide the rule learning and
restrict the hypothesis space of rules. This loss enforces semantic constraints
on rule structure through a differentiable relaxation of semantic refinement [4]
allowing users to encode background knowledge as axioms to mitigate rule re-
dundancy. For example, in the rule r < less(X,Y),less(Y, Z),less(X, Z), due to
the transitive relation less(X, Z) < less(X,Y),less(Y, Z), the term less(X, Z)
is redundant. DERRL enables predefining such knowledge as axioms, penaliz-
ing models that violate them. We compare our framework with that of Neural
Logic Reinforcement Learning (NLRL) [25] which uses FOL to represent rein-
forcement learning policies and is based on Differentiable Inductive Logic Pro-
gramming (OILP) [10]. Much like DERRL, NLRL uses policy gradients to train
a differentiable ILP module by assigning learnable weights to rules. The authors
demonstrate interpretability and generalizability of policies to different problem
configurations. We demonstrate DERRL’s advantages over NLRL in terms of
computational efficiency, policy accuracy, and semantic constraint enforcement.
Contributions. (i) A neuro-symbolic framework DERRL for learning inter-
pretable RL policies in on-policy, model-free settings, demonstrating their adapt-
ability to environmental changes; (ii) A differentiable relaxation of semantic
refinement for guiding rule generation and constraining the hypothesis space.

2 Related Works

Integrating Symbolic Planning and RL. Recent research has sought to
merge symbolic planning with deep reinforcement learning (DRL) to improve
data efficiency and performance, as seen in works like PEORL [55], RePReL [30],
and SDRL [36]. These approaches aim to integrate a high-level planner that sug-
gests sub-goals to be executed by a low-level DRL model, thus relying on pre-
defined environment dynamics, such as high-level action schemas with pre and
postconditions. DERRL differs from planning-based methods as it is purely a RL
approach, i.e. it does not have access to precise handcrafted action schemas or the

3 DERRL uses a relational representation akin to Quinlan’s FOIL[42] with background
knowledge comprising ground facts and non-recursive Datalog-formulated rules.
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reward function, and instead learns suitable control policies through trial-and-
error interactions with the environment. Therefore, we only compare DERRL
with other RL baselines. Explainable RL. Previous studies on interpretable
RL have utilized decision trees for their ease of interpretation. Standard de-
cision trees consist of nested if-then rules, are non-differentiable, and cannot
be trained using gradient descent methods. The online nature of RL problems,
combined with the non-stationarity introduced by an improving policy, presents
additional challenges for decision trees as the agent interacts with the environ-
ment. One straightforward but inefficient solution is to re-learn the decision
trees from scratch [8]. More recently, researchers have explored the use of differ-
entiable functions in decision trees [12]. Differentiable Decision Trees have also
been adapted for the RL framework [44l34], although their performance does not
match that of deep neural networks. Concurrent Works. Our work on inte-
grating differentiable logic programming into RL is concurrent with efforts such
as NLRL [25] and ANL-ILP [41]. While dNL-ILP lacks goal generalization, we
use the recent NLRL as our baseline. Recent research has also employed Graph
Neural Networks [29] to capture relational representations [13/14] with appli-
cations to DRL [24] demonstrating zero-shot generalization to varying problem
sizes. DERRL additionally learns interpretable policies. Adjusting Language
Bias The possible hypothesis space expands exponentially with input space,
necessitating user adjustments to language biases based on domain knowledge.
Relational learning systems use declarative bias via semantic refinement [4]. Dif-
ferentiable rule learning methods like OILP [10] and NLRL [25] use rule templates
to limit rule body atoms to 2. However, these methods overlook background
knowledge and face redundancies. DERRL mitigates redundancies and shrinks
the search space through a differentiable relaxation of semantic refinement.

3 Preliminaries

3.1 Logic Programming:

Logic Programming [35] rules are written as clauses of the form a < ay, ...,y
composed of a head atom « and a body «, ..., a,,. These clauses are defined
using the standard if-then rules, wherein, if the body is satisfied, the head is true.
Each atom is a tuple p(v1,...,v,) where p is a n-ary predicate and vy, ..., v,
are either variables or constants. A ground atom is one that contains only
constants. A predicate can either be extensional when it is defined by a set of
ground atoms, or target (intensional) when it is defined by a set of clauses.
An alphabet £ is defined by the tuple £ := (Pyar, Pext, arity, C, V') where,
Piar is a set of target predicates, Poyt is a set of extensional predicates, arity :
Pext U Ptar — N is the number of arguments (variables or constants) that the
predicate can take, C' is a set of constants and V is a set of variables allowed
in the clause. For the blocks world game in Figure [1} Pia = {move/2}, Poyxt =
{top/1,0n/2, goal _on/2,isFloor/1},V ={X,Y,Z}, C = {a,b,c}.
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3.2 Relational Markov Decision Process:

We model our problem as a Relational MDP (RMDP) given by the tuple £ :=
(S,B, A, d,r,v) which is just like a regular MDP, but with relational states and
actions. Here, S is a set of states, where each state is represented as a set of
ground atoms consisting of predicates in Peyt and constants in C'; B is the back-
ground knowledge also represented in form of ground atoms consisting of pred-
icates and constants, but unlike the state, it remains fixed over the episode; A
is a set of actions consisting of ground atoms from predicates in P, and con-
stants in C; § : S x A+ S is an unknown transition function; r : S x A+— R
is an unknown real-valued reward function; ~ is the discount factor. In the
blocks world game (Figure , for the tuple ((a, b, c))ﬂ the initial state sg and B
are {top(c),on(c,b),on(b,a),on(a, floor)} and {isFloor(floor),goal on(a,b)},
respectively. The actions are move(X,Y’) where variables X and Y can be sub-
stituted with constants in C'. Although underlying models often use logical tran-
sition and reward rules [27], our approach is model-free, so we ignore them here.

3.3 Problem Statement:

Given, a tuple (£,€) where L is an alphabet, and £ is an RMDP;

Find an optimal policy 7 : SUB +— A as a set of clauses (also called rules) that
maximizes the expected reward E,.r, [RT], where R, := Z;‘::_tlﬂ yFtIR,.
Here, an episode trajectory is denoted by 7.

More formally, the rules are selected from the hypotheses space, which is the
set of all possible clauses. The head atom of each such rule is an action and the
body is the definition of the action. As shown in Figure|l} a rule for move(X,Y)
in the blocks world environment is given as move(X,Y) + top(X),on(X, Z),
isFloor(Y') which states that move(X,Y) is triggered when the rule definition
(i.e., the body) is satisfied. Thus, if the policy selects the action move(c, floor),
one can quickly inspect the body to find out how that action was taken. The
rules are discriminative (i.e. that help select the correct action by distinguishing
it from alternative actions) and together provide an interpretation of the policy.
A set of rules is learned for each action. Once trained, the rules for actions do
not change and the rule body decides which action should be triggered at each
time-step. In what follows, we provide a detailed explanation of rule generation
and inference for each time-step of an episode. For simplicity, we expunge the
time-step notation (for e.g., state at t*" time-step s; is now s).

4 Proposed Approach

Counsider an alphabet £ where Py, = {r/0,s/0}, Pext = {p/1,¢/2},V = {X, Y},
C = {a, b}. The set of all ground atoms G formed from the predicates in Peyy and

4 Here, the outer tuple denotes stacks and the inner tuples denote the blocks in the
stack. For e.g., ((a,b), (c,d)) has two stacks: (a,b) is stack 1 and (c, d) is stack 2.
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constants in C is {p(a),p(d),q(a,a),q(a,b),q(b,a),q(b,b)}. We represent each
ground atom g; € G along with its index j in Table [}

Recall, that both state s and background knowledge B are represented using
ground atoms. Given a state s = {p(a), ¢(a,a),q(a,b)} at each time-step, and
an empty background knowledge B, we encode it to a state vector v, such that
each element v; = 1 if g; € {s, B} (i.e. if the current state s or the background
knowledge B contains the ground atom g;), else 0. Let us now consider the set
of all atoms K formed from the predicates in Py and variables in V' (instead
of the constants in C'). Table [2|lists the atoms k; € K and the corresponding v.

Table 1: Table of all ground atoms G and their indices j.

i 0 1 2 3 4 5
gi p(a) p(b) a(a,a) q(a,b) q(b,a) q(b,b)|s = {p(a), ¢(a, a),q(a,b)}
v; 1 0 1 1 0 0 |v=1[1,0,1,1,0,0]

Table 2: All atoms K, their indices j, the generated rule vectors b",b®, and
corresponding probability vectors P", P*? for target actions Py, = 7/0, /0.

i 0 1 2 3 4 5

ki p(X) p(Y) (X, X) q(X,Y) q(Y, X) q(Y,Y)

b; 0 1 0 0 1 0 r+p¥)qY, X)

PjT 0.1 0.8 0.3 0.4 0.7 02 w' = [0.8,0.7]T

b; 1 0 0 0 0 1 s+ p(X),qYV,Y)
[

q
Pf 06 03 04 0.2 0.1 0.9 w*®=10.6,09]"

J

We represent rules using rule vectors. As shown in Table[2] the rule vector for
each action i € A is given as b’ € {0,1}™, where m =| K | (i.e. the cardinality
of the set of all atoms formed from the predicates in Py and variables in V).
Here, bi = 1, if the j'" atom is in the body of the " rule. From Table
b" =1[0,1,0,0,1,0] " corresponds to the rule r < p(Y), q(V, X).

We impose the Object Identity (OI) assumption [28] which states that during
grounding and unification, distinct variables must be mapped to distinct con-
stants. For instance, ground rules for r + p(Y), ¢(Y, X) are r < p(b), ¢(b,a) and
r < p(a),q(a,b) under substitutions ¢o = {a/X,b/Y} and ¢1 = {b/X,a/Y},
respectively, but a substitution ¢ = {a/X,a/Y} is not allowed. Without loss
of generality, one can model nullary predicates and negated atoms, by simply
including additional dimensions (corresponding to atoms in K) in the vector b’.

The DERRL framework learns a rule vector b’ for each action i € A by
associating it with a trainable weight vector w’. Each element w? € w’ indicates
the membership of the corresponding atom in the rule definition (i.e., if the
weight of the atom is high, it is more likely to belong to the rule definition). Given
the state vector v, action probabilities my (i | s, B) are calculated by performing
a fuzzy conjunction on the rules (Section . The whole framework is trained
end-to-end using the REINFORCE algorithm [52], with the loss function given as
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J(mg) = —Eqrromy [RT]. Here, R, is the discounted sum of rewards over trajectory
7, and 6 is the set of trainable parameters.

Algorithm [T] summarizes the DERRL framework. The two main components
of DERRL are (i) Rule Generator (Section [£.1)), which at every time-step ¢ and
for each action i € A, generates a rule vector b’, and a weight vector w'; (ii)
Forward chaining Inference (Section that takes the generated rules vectors
for all actions {bi}ﬁ‘l, the corresponding weight vectors {wi}Li‘l, and the state
valuation vector v for the t* time-step, and returns the action probabilities
7o(. | s, B). Note, that the rule generator parameters 6 are trained by calculating
the gradients of the loss function with respect to weight vectors w?.

4.1 Rule Generation

The rule Ry : i — b’,w’ uses a parameterized network Ry to map each action
(index) i to a rule vector b" and weight vector w’. Here, b5 = 1 indicates the
4t atom is in the rule body. The rule generator outputs a probability vector P?
where P; represents the probability of the j'* atom in K belonging to the rule
body. We use the Gumbel-max trick [23] on P* to sample the binary vector b*.

b;- = arg max(log(P;) + uo, log(1l — P;) + u1) where v ~ Gumbel(0, 1)

Here, Gumbel(0, 1) is the standard Gumbel distribution given by the probability
density function f(x) = e~ (@+e™)  During evaluation, we use arg max(.) opera-
tion without sampling. From P?, we also obtain the weight vector w? € RI®* I
comprising the probabilities of only those atoms which have b = 1. From Ta-
ble the generated rule vector b” = [0,1,0,0, 1,0] ", the probability vector P" =

[0.1,0.8,0.3,0.4,0.7,0.2] T, and the corresponding weight vector w” = [0.8,0.7]T.

4.2 Inference

i XYt w2t Fime(i] s, B)
0,3 1,1] [0.8] [0.5
r <+ p(Y),q(Y,X) |:1 4:| |:0 0] [0'7} {0:| 0.5 0.62

s p(X),q(Y,Y) ﬁg} {(1)‘1)] [8:8] [g} 0 038

Consider the following rules generated by the rule generator. Each rule is passed
through a substitution ¢ : V ~— C to produce ground rules. Let, X* € Zgéd))x 1%l
be the matrix representation of the ground rules. Here, Z>¢ and N(¢) are the
set of non-negative integers and the number of possible substitutions, respec-
tively. Each row in X’ is a vector of ground atom indices that belong to the
ground rules. Using a substitution ¢ = {b/X,a/Y }, we obtain the ground rule
r < p(a),q(a,b). From Table [ this rule definition can be written as the vec-
tor [0,3] (i.e., indices of p(a) and g(a,b) are 0, 3, respectively). Similarly, the
substitution ¢ = {a/X,b/Y} gives us r < p(b), q(b, a), and the vector [1,4].
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Next, the value(.) operation takes each element X;- and returns its state value
vj. From Table Y" = value(X") = value( [?:ﬂ) = BT:Zﬂ = [(1): (1)} The row
vectors of Y = [yi, ... ,ij(¢)] € RN@XIIP*I1 can be regarded as truth values
of the grounded rule (i.e., for each substitution ¢), based on {s, B}. If the rule
definition is not satisfied, the corresponding row vectors will have sparse entries.
To ensure differentiability, we use fuzzy norms for our rules.

Fuzzy Conjunction Operators. Fuzzy norms integrate logic reasoning with
deep learning by approximating the truth values of predicates [T0J37]. Fuzzy
conjunction operators * : [0, 1]1%°l1 = [0,1] can be of various types like Godel
t-norm and Product t-norm (refer Section . We use Lukasiewicz t-norm
(Truk(a,b) := max{0,a + b — 1}) to compute the action values for each ruleﬂ
To encourage the rule generator to generate more precise rules with higher

probability, we calculate a valuation vector by weighing each row y,@ e RI'I

with the weight vector w’ € RI?’l1| and using the Lukasiewicz operator as
2t = max(0, (yi,w")— | w’ | +1). Intuitively, the inner product (yi,w?) is a
weighted sum over all atoms in the rule body that are true in s U B. This is akin
to performing (a + b) in t-norm operator. For yj = [1,1]T,w" = [0.8,0.7]:

20 = max(0, ( H , [8§]> —1)=05

With multiple substitutions (or groundings) for a generated rule, we find the
maximum valuation as F* = max(z"). The final action probability is calculated
as m(i | s, B) = softmax(F"). Note, that if the generated rule is not satisfied for
any substitution (i.e., has a sparse row vector in the matrix Y?), the valuation
of the generated rule is lower (for e.g., from the above table F° < F").

Multiple rules for a single action. We generalize DERRL to learn policies
with multiple rules for each action, allowing it to switch between rules based
on input (for e.g. in the blocks world game, the "move" action uses two rules
executed at different steps depending on the goal blocks’ position). We allow
multiple rule networks per action, adjusting the final computation step to de-
termine action probabilities based on the best-satisfied rule. Given F§ and F%
for two different rules for the same action, we first compute F* = max(F?, Fi)
to determine which rule is more appropriate at a given time-step. Consider two
different rules generated for action 7 with arbitrary Y*:

5 More generally, given a vector y € [0,1]", Lukasiewicz t-norm Truy :=
max(0, (y,1) — n + 1). For the proof, refer Section
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Algorithm 1 Deep Explainable Relational Reinforcement Learning (DERRL)

Input: Alphabet: £, RMDP: £
Output: (set of) rules that encode the policy my
Initialize rule generator parameters 6

for each episode do
fort=0toT —1do

v = encode(s, B) > state vector
for each action ¢ do

b’ w' ~ R (i) > Rule Generation (Section [4.1)
end for
mo(. | s,B) = Inference(v, {bi}ﬁl17 {wl}lli‘l) > (Section

a~my(.|s,B)
s+ 8(s,a); Ry <+ r(s,a)

end for

IS

0 < 60 —nVoErr,[Rr]
end for

Here, F" = max(0.5,0) = 0.5 is the valuation for rule r. Intuitively, depend-
ing on the current state s and background knowledge B, one of the rules will be
more appropriate (i.e., lower sparsity in rows of Y?) than the others, prompting
the policy to switch to that rule for decision makingﬂ

4.3 Semantic Constraints

The set of possible rules to consider grows exponentially with the number of
predicates and their arity. While traditional relational learning systems have
used declarative bias in form of semantic refinement [4], prior works in dif-
ferentiable rule learning [10J25] employ rule templates to restrict the hypoth-
esis space (e.g. rules of size 2). However, these methods frequently encounter
redundancies. For example, rules r <« less(X,Y),less(Y,Z),less(X,Z) and
s + equal(X,Y), equal(Y, X) exhibit transitive and symmetric relations, re-
spectively, making some atoms redundant. A rule r is redundant w.r.t. a con-
straint h < by,...,b, if the rule false < h,bq,...,b, subsumes the rule r.
To avoid redundancies, generated rule vectors with b; = 1 for both atoms

5 This assumes a specified upper bound on the number of rules for each action, similar
to selecting the number of clusters in a clustering algorithm [54].
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equal(X,Y) and equal(Y,X) should be penalized. To this end, we propose a
differentiable relaxation of semantic refinement by applying a supervised loss
on probability vectors {P’}l’i‘l We declare semantic constraints S. as axioms
which can either be a relation (symmetric or transitive), or some background
fact (like false + on(X,Y),on(Y, X)). Then we calculate the semantic loss as
Lsem = ersc ZieA Hjea: PjZ'

Here, the outer summation is over each semantic constraint z € S., and the
inner summation is over each generated rule ¢ € A. The product is over the prob-
ability of each atom (with index j) in the body of axiom x. For instance, given
a single axiom false + p(Y), q(Y, X), for the generated rule r < p(Y), ¢(Y, X),
from Table [2| the loss is Lsem = P} x Pi = 0.56. Here, the loss is high because
according to the given constraint, p(Y') and ¢(Y, X) should not appear together
in the body of the rule. Intuitively, the loss is highest if the membership proba-
bilities of both atoms are high warranting a penalization. L, is summed over
the entire episode and the final loss is given as J(mp) = J(7g) + AsemLsem. Here,
Asem 18 a regularization term. See Appendix@for constraints in all environments.

5 Experiments

Through our experiments, we aim to answer the following questions: (1) Can
the proposed approach learn interpretable policies while performing on par with
neural-based baselines? (Section ; (2) Are the learned rules agnostic to mod-
ifications in the environment? (Section [6.2); (3) How efficient and scalable is the
proposed approach compared to the current state-of-the-art NLRL? (Section

5.1 Experimental Setup

The Countdown Game. The agent manipulates a stack of numbers and an
initial accumulated value acc(X) to match a target number goal(X) by applying
operations like addition (add), subtraction (sub), or no operation (null). The
stack comprises of the top number (curr(X)), number below it (next(X,Y")), and
bottom-most number (last(X)). From Figure [1} the state s; includes the stack,
accumulated number, and goal number. Operations are performed between the
accumulated value and the top number of the stackﬂ The background knowledge
B comprises the target numbeIEI7 and atoms of the form less(X,Y") which denote
that number X is less than Y. A reward of » = 1 is given when the target and
accumulated values match at the end of the episode, otherwise r = _%:acc\
where N; is a normalizing constant. An initial range of numbers [—4, 6] and stack
of length= 2 is used for training. The learned models are tested for generalization
on the following tasks (i) dynamic stack lengths of {3,4,5}; (ii) held-out target
unseen during training; (iii) held-out initial stack sequences. We also train a
stochastic game version with 10% probability of altering an action to null.

" add: acc += top, sub: acc —= top, null: acc
8 goal(X) is provided as background since it does not change during the episode.
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Blocks World Manipulation. Given an initial configuration of blocks, the
goal is to put a specified block atop another specified block (Figure . Stacks
are represented using predicates: top(X) means that block X is the top block,
on(X,Y’) means that block X is on top of block Y. The actions are move(X,Y)
with X = {a,b,c} and Y = {a,b,¢, floor}. A reward r = 1 is provided if
the task is achieved. To enforce optimal planning, we impose a penalty of r =
—0.02 for every action. Training includes a fixed number of blocks = 3 and a
fixed goal — to stack block a on block b (goal on(a,b)). We train it with initial
configurations: ((a,b,¢)); ((¢,a,b)); ((a,c), (b)); ((b,c), (a)). Here, each tuple is a
stack. For generalization, we use variations like (i) held-out configuration unseen
during training like ((a,b), (c)); ((b,¢,a)); ((b,a,c)); (ii) dynamic (number of)
blocks {4,5}; (iii) dynamic (number of) stacks {2,3,4}; (iv) unseen goals like
goal _on(b,a) and goal _on(a,c).

Gridworld. The agent navigates a grid with obstacles to reach the goal (Fig-
ure [I). The agent can move vertically (up/down) or sideways (left/right).
The state information consists of the current position of the agent curr(X,Y)
where X and Y are the coordinates, and the compass direction of the target
(North, South, East, West, Northeast, Northwest, Southeast, Southwest). The
background information consists of target coordinates (target(X,Y’)), obstacle
coordinates (0bs(X,Y)), and successor information suce(X,Y) where Y = X +1.

The action space is {up, down, left, right}. The agent receives a reward of r = 1

ti it
for reaching the target, otherwise r = _ llpositiongoar pos’ ionagentllz  Here Ny is

a normalizing constant. During tralmng, a fixed size grld of 3 x 3 and 5 x 5 is
used with the number of obstacles being fixed = 2. For generalization, we use
the following variations: (i) dynamic (number of) obstacles {3,4}; (ii) held-out
(agent-goal) configurations. Unlike graph search algorithms like A* that assume
access to the dynamics model, DERRL learns actions through exploration.

Traffic. We used the Simulation of Urban MObility (SUMO) traffic simula-
tor [31] to simulate traffic flow, where intersections (3-way and 4-way) function
as agents denoted by intersection(Y), and are connected by a network of 2-way
lanes represented as between(X,Y, Z), indicating a connection between intersec-
tions Y and Z by lane X. The goal is to minimize the traffic at the intersections,
hence reward is the negative queue length at each intersection. Each agent is
provided with the lane that has the highest traffic, labeled as highest(X) for
lane X, and is responsible for controlling the traffic lights for that lane, enabling
them to turn the lights green (green(X)) for a specific lane X. Therefore, 3
and 4-way intersections have an action space of size 3,4 respectively. Although
only two models (one for all 3-way intersections and another for all 4-way in-
tersections) suffice, we train each intersection independently to demonstrate the
scalability of DERRL to multi-agent setups, and also for future developments in
cooperative multi-agent setups [57J21]. We train on a grid comprising 5 agents
and transfer the learned rules to an 8-agent grid. We show the mean rewards of
all agents in Table [3] - note, that the best possible reward ~ 0.

DoorKey Minigrid. The agent task is to unlock a locked door (locked(Y),
door(Y')) and reach a goal (goal(Z)). Various colored keys (key(X)) are scattered
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Table 3: Generalization Scores (average rewards over 50 episodes across 3 runs)
compare DERRL to other baselines. DERRL outperforms baselines, including
the state-of-the-art NLRL. In Traffic, the mean reward for all agents is reported.

Setup DERRL NLRL GCN MLP Random
Countdown training 0.98 0.95 0.98 1.00 0.30
Game dynamic stack 0.98 0.95 0.95 0.54 0.38
held-out target 0.98 0.85 0.95 0.35 0.33
held-out initial 0.98 0.55 1.00 0.35 0.18

Countdown ..

Game(stochastic) training 0.98 0.95 0.98 1.00 0.15
. training 0.97 0.97 0.97 0.97 -0.18
ﬂ;ﬁi‘:ﬁi’ii held-out config. 0.97  0.70 0.55 045  -0.18
P dynamic blocks 0.92 0.51 -0.20 -0.21 -0.22
dynamic stacks 0.96 0.90 0.90 0.85 -0.18
unseen goal 0.96 0.45 -0.18 -0.18 -0.18
DoorKey training 0.80 0.45 0.75 0.90 0.10
Minigrid  “qynamic keys/doors  0.78 0.25 0.35 0.20 0.05

Traffic training (5-agents)  -0.76  -0.91  -0.90  -0.95  -1.54

8-agents -1.02 -1.28 -1.45 -1.75 -2.17

Gridworld training 0.75 0.72 0.70 0.81 0.03
Game dynamic obstacles 0.70 0.55 0.46 0.51 -0.15
held-out config. 0.81 0.70 0.17 -0.61 -0.70

throughout the room, and the agent must select the key that matches the color
of the door (samecolor(X,Y)) to unlock it. We use high-level actions. The agent
is only allowed to carry one key at a time and can navigate to and pick up a
key X using the pick(X) action if it is not carrying any keys (notcarrying),
otherwise, it drops the key before picking the new one. The open(X) action
enables it to unlock a door X if it carries the key that matches the door’s color.
The goto(X) action enables the agent to navigate to a specific object X. The
reward = 1 for successfully reaching the goal, else 0. The learned model is tested
for generalization with additional doors and keys of varying colors.

We evaluate our DERRL against Neural Logic Reinforcement Learning
(NLRL) baseline. We also compare with model-free DRL approaches with varia-
tions in the deep learning module like (i) Graph Convolution Network (GCN) [29]
that perform well at relational learning [32], and are invariant to the number of
nodes in the graph; (ii) Multilayer Perceptron (MLP). Finally, we compare with
a Random (Random) baseline where the weights of the MLP are randomized
to set a lower limit on the performance. We use a single-layer neural network
for our rule generator (2m parameters). For the GCN and MLP baselines, we
experimented with 2-layer networks (O(m?) parameters).
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6 Results

6.1 Interpretation of policies (Q1)

In this section, we provide interpretations of the learned rules in each training
environment, as shown in Figure [Il The Countdown Game. The policy se-
lects add action when acc(X) < goal(Y'), sub action when acc(X) > goal(Y),
and null action when both are equal. Blocks World Manipulation. The pol-
icy learns two rules for move(X,Y’). Given a goal to put block a atop block
b, the first rule is applicable when at least one of the blocks is not the top
block. Hence, the policy learns to unstack the blocks — the top block X of the
stack is moved to the floor Y. The second rule is applied when both a and b
are at the top. Traffic. The general rule for each intersection is green(X) «+
highest(X), between(X,Y, Z), intersection(Y"), intersection(Z). Intuitively, the
lights corresponding to the lane with the highest traffic X, connecting intersec-
tions Y and Z, are turned green. DoorKey Minigrid. The learned rule for
action pickup(X) tells the agent to pickup the key X that matches the color
of the door Y, provided that it is not carrying any other items (notcarrying).
Similarly, for open(X), the learned rule states that the agent can unlock a locked
door X using the key Y only if the colors of the door and the key match. The
goto(X) action directs the agent to navigate to the goal object X when the door
is unlocked. Gridworld Game. In this setting, the policy learns two rules for
each action. The first is used for navigation to the target, such as moving up if
the target is to the north (or northeast and northwest) of the grid. The second
helps navigate around obstacles, e.g. move up if the obstacle (given by (Z,Y)) is
to the immediate right of the agent (given by (X,Y")). However, the policy may
not follow the shortest patlﬂ or have consistent traversal strategies, resulting in
varied rules for different instances without performance loss.

DERRL also bears similarities with Program Synthesis [483l20], which in-
volves finding a program that meets user specifications and constraints. Learned
policies can be rewritten as programs (see Appendix. For example, a program
to solve the countdown game involves operating on current and accumulated val-
ues (using add, sub, null operations) until accumulated value = goal value.

6.2 Generalization performance (Q2)

From Table|3] we observe that DERRL learns general rules, generalizing to envi-
ronment modifications, and outperforms baselines in generalization tasks. Unlike
symbolic planning, DERRL’s performance remains unaffected by noisy training,
such as stochastic Countdown. Secondly, although GCNs perform well in rela-
tional learning, their generalization is marginally better than MLP, potentially
failing to capture task agnostic relational patterns. However, GCN surpasses
MLP and NLRL in the countdown game. Lastly, DERRL’s training performance

9 When the target is to the southeast, and the agent encounters a target to its right,
it will travel north (up) rather than south (down).



14 Rishi Hazra X and Luc De Raedt

Blocksworld Gridworld

0.6
[ 5000 10000 15600 20000 6 5000 10000 15600 20600 25600 30600 [ 10600 20000 30000 40000 50000

Episode Episode Episode
Fig. 2: [Best viewed in color] Comparison of training rewards at convergence for
different baselines plotted by averaging the rewards over 3 independent runs.
[Left to right] Countdown Game, Blocks World, and Gridworld.

is comparable to MLP, but it outperforms MLP in generalization tasks, where
MLP is similar to the Random baseline. Additionally, DERRL’s convergence
speed is on par with MLP, as shown in Figure

6.3 Comparison with NLRL (Q3)

Computational Complexity. NLRL assigns trainable weights to all possible
rules with a body size of 2, while DERRL allocates weights to each atom in
the rule body. Given, m atoms from Pgy and V, NLRL has C(m,2) learnable
weights, while DERRL has 2m. Therefore, the training reduces from learning
the best set of rules (in NLRL) to learning the best membership of the rules
(in DERRL), leading to a lower computation time in DERRL. The computation
time per episode is reduced by a factor of ~ 10 (Figure |3).

Comparing Learned Rules. NLRL learned rules in blocksworld are:

move(X,Y) « top(X),pred(X,Y); move(X,Y) < top(X), goal _on(X,Y)
pred(X,Y) < isFloor(Y),pred2(X); pred2(X) < on(X,Y),on(Y, Z)

With invented predicates pred and pred2, this plan differs from DERRL in that
the second rule doesn’t verify if both X and Y are movable, failing to solve con-
figurations where block b is below block a. Size of hypothesis space. DERRL
restricts the hypothesis space through the use of semantic constraints in the
optimization problem, whereas large hypothesis space in NLRL limits its con-
vergence in DoorKey and Traffic domains. The convergence in DERRL is slower
without semantic constraints (see Appendix |§| for ablations on DERRL with
and without semantic constraints). Expressiveness. NLRL can learn recursive
rules by using templates as in meta-interpretive learning and predicate invention.
While this is expressive, it can be hard to master. In contrast, DERRL learns
non-recursive Datalog as Quinlan’s FOIL [42] but combines it with constraints
that can be recursive to rule out redundancies.

7 Conclusion

We proposed a neuro-symbolic approach to learn interpretable policies that are
also generalizable. The representations that DERRL and RRL use are very sim-
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Fig. 3: Run-time comparison per episode between DERRL and NLRL as prob-
lems scale. Left to right: Countdown game (stack size), Countdown game (range
of numbers), Blocks World (number of blocks). Y-axis in log scale. Plots show
NLRL takes approximately 10 times longer per episode compared to DERRL.
See additional plots in Appendix @

ilar to those used in the planning community. We also significantly improve
upon the scalability of existing state-of-the-art NLRL. Upgrading the approach
to enable automatic learning of the required number of rules can be a potential
research direction. Also, as a part of future work, it will be interesting to ex-
plore ways in which the proposed approach can be scaled to real-life applications
requiring the need to process raw sensory inputs.
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Appendix for “Deep Explainable Relational
Reinforcement Learning: A Neuro-Symbolic
Approach"

8 Semantic Constraints

Following are the semantic constraints used for each setup

The Countdown Game.

false < goal(X), goal(Y) false < less(X,Y),less(Y, X)
less(X,Z) « less(X,Y),less(Y, Z) false « ace(X), ace(Y)
false < curr(X), curr(Y)

Blocks World Manipulation.

false «+ isFloor(X),isFloor(Y) false < on(X,Y),on(Y, X)
false + on(X,Y),on(X, Z) false + top(X),on(Y, X)
false < top(Y),isFloor(Y) false < goal(X,Y), goal(Y, X)

DoorKey Minigrid.

false « carrying(X), notcarrying

samecolor(X,Y) < samecolor(Y, Z), samecolor(Z, X)
samecolor(X,Y) < samecolor(Y, X)

false < carrying(X), carrying(Y")

false «+ locked(X),unlocked

Traffic
between(X,Y, Z) + between(X,Z,Y)
false < highest(X), highest(Y'), highest(Z)

Gridworld Game
false < curr(X,Y), curr(Y, X) false «+ succ(X,Y), succ(Y, X)

9 Computation Time comparison

See Figure [ for run-time comparison of DERRL and NLRL for Gridworld,
DoorKey, and Traffic domains. Additionally, as shown in Figure [5] without the
use of semantic constraints, the convergence in DERRL is slower and the learned
rules are redundant.
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Fig. 4: Comparison of run-time per episode of DERRL and NLRL with problem
scaling: From left tor right: Gridworld (grid-size), DoorKey (number of keys),
Traffic (number of intersections). The Y-axis is represented in log scale. The plots
show that time taken per episode is significantly higher for NLRL, compared to
DERRL.
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Fig.5: Ablations on semantic constraints. Figure shows how the use of semantic
constraints lead to faster convergence in the Traffic (Left) and the DoorKey
Minigrid (Right) domains.

10 Analogies with Program Synthesis

In many ways, program synthesis techniques exhibit the same challenges as that
of interpretable policy learning, wherein, programs generated using neural meth-
ods cannot generalize to new problems [I8/45], and symbolic methods employing
search-based methods are faced with the curse of dimensionality [46/43/50]. Our
exploratory study indicates that our rule generation framework is closely related
to the paradigm of rule-based program synthesis [I9/I]. The specification here
is — one needs to find a sequence of instructions (a program or a policy) that
transforms the given state into a target state. However, in program synthesis,
the instructions are usually deterministic, while in RRL they can be stochas-
tic. Note, that DERRL selects at every time step the next action and moves to
the next position and iterates. Although DERRL uses non-recursive rules, the
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learned policies are applied iteratively, which results in programs as shown in
Figure [0}

Countdown Game Gridworld DoorKey Minigrid
while goal != acc: if dir in [north, northeast, northwest] i no:fz;;?gg o e A
if acc < goal: up ickup(X) U= A
add() elif dir in [south, southeast, southwest] - GO
. elif locked(X):
elif acc > goal: down. - .
o if key(Z) and samecolor(X, Z):
sub() elif dir == east
; open(X)
else: right . X
elif unlocked:
null() else: if goal(X):
left if goal(X):
goto(X)
Traffic Blocksworld
if highest(X):

while not top(a) and not top(b):
unstack()
move(a, b)

if intesection(Y) and intersection(Z):
if between(X,Y, Z):
green()

Fig. 6: Programs for different environments: [Row 1]: from left to right, Count-
down Game, Gridworld, DoorKey Minigrid. [Row 2]: from left to right, Traffic
and Blocksworld.

11 Fuzzy Conjunction Operators

A fuzzy conjunction operator # : [0,1]¢ — [0, 1] must satisfy the following con-
ditions on a t-norm [9] (here, e is the number of atoms in the rule body):

— commutativity: a *b=0b*a
associativity: (a % b) xc=ax (bx*c)
— monotonicity:

1. a1 < as implies a1 xb < as xb
2. bl S b2 implies a*bl S a*bg

— unit:
l.axl=a
2.ax0=0

The operators that satisfy the aforementioned conditions are:

— Godel t-norm: a * b := min(a, b)
— Lukasiewicz t-norm Truk(a,b) := max{0,a +b— 1}
— Product t-norm: a * b := a - b (ordinary product of real numbers)

Lukasiewicz t-norm was experimentally found to perform better than other
alternatives.
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Proposition 1 More generally, given a vector y € [0,1]", Lukasiewicz t-norm
TLuky = max((), <y7 1> —n+ 1) (1>

Proof. . We prove it using mathematical induction.
Base Case: For y = [a,b], eq.|l] is clearly true.

T ruk(a,b) := max(0,a+b—2+1)

Inductive Step: Let, T Ly hold for y € [0,1]*. We denote it as,

Truy = max(0, (y,1) — k + 1) (2)
Now let § € [0,1]¥*+1. Using the associativity property:

T Lury = max(0, T Lury + Y1 — 1)
= max(0, max(0, (y,1) —k+ 1) + ypy1 — 1)

— Case 1: (y,1) > (k—1). It follows that max(0, (y,1) —k+1) = (y, 1) —k+1

TLukg = maX(O, <y? 1> -k + 1+ Yk+1 — 1)
=max(0,y1 + - +ye —k+ 1441 — 1)
:= max(0, (g,1) — (k+1) —1)
Thus, eqn. [1] is true.
— Case 2: (y,1) < (k—1). It follows that max(0, (y,1) —k+1) =0
T Luky = max(0, yx+1 — 1)
=0 since yp4+1 € [0, 1]

Also, (y,1) < (k —

) (9,1) <k since yp41 € [0, 1].
s ofromoeqn. [1, Tty :=0

12 Code

All models were run on CPU nodes. The codes will be made available soon.
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