Skip to main content

Filtered Observations for Model-Based Multi-agent Reinforcement Learning

  • Conference paper
  • First Online:
Machine Learning and Knowledge Discovery in Databases: Research Track (ECML PKDD 2023)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 14172))

  • 950 Accesses

Abstract

Reinforcement learning (RL) pursues high sample efficiency in practical environments to avoid costly interactions. Learning to plan with a world model in a compact latent space for policy optimization significantly improves sample efficiency in single-agent RL. Although world model construction methods for single-agent can be naturally extended, existing multi-agent schemes fail to acquire world models effectively as redundant information increases rapidly with the number of agents. To address this issue, we in this paper leverage guided diffusion to filter this noisy information, which harms teamwork. Obtained purified global states are then used to build a unified world model. Based on the learned world model, we denoise each agent observation and plan for multi-agent policy optimization, facilitating efficient cooperation. We name our method UTOPIA, a model-based method for cooperative multi-agent reinforcement learning (MARL). Compared to strong model-free and model-based baselines, our method shows enhanced sample efficiency in various testbeds, including the challenging StarCraft Multi-Agent Challenge tasks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bard, N.: The hanabi challenge: a new frontier for AI research. Artif. Intell. 280, 103216 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  2. Dhariwal, P., Nichol, A.: Diffusion models beat GANs on image synthesis. Adv. Neural. Inf. Process. Syst. 34, 8780–8794 (2021)

    Google Scholar 

  3. Fang, K., Yin, P., Nair, A., Levine, S.: Planning to practice: efficient online fine-tuning by composing goals in latent space. arXiv preprint arXiv:2205.08129 (2022)

  4. Hafner, D., Lillicrap, T., Ba, J., Norouzi, M.: Dream to control: learning behaviors by latent imagination. arXiv preprint arXiv:1912.01603 (2019)

  5. Hafner, D., et al.: Learning latent dynamics for planning from pixels. arXiv preprint arXiv:1811.04551 (2018)

  6. Hafner, D., Lillicrap, T., Norouzi, M., Ba, J.: Mastering Atari with discrete world models. arXiv preprint arXiv:2010.02193 (2020)

  7. Ho, J., Jain, A., Abbeel, P.: Denoising diffusion probabilistic models. Adv. Neural. Inf. Process. Syst. 33, 6840–6851 (2020)

    Google Scholar 

  8. Hu, H., Foerster, J.N.: Simplified action decoder for deep multi-agent reinforcement learning. arXiv preprint arXiv:1912.02288 (2019)

  9. Janner, M., Du, Y., Tenenbaum, J.B., Levine, S.: Planning with diffusion for flexible behavior synthesis. arXiv preprint arXiv:2205.09991 (2022)

  10. Kuba, J.G., et al.: Trust region policy optimisation in multi-agent reinforcement learning. arXiv preprint arXiv:2109.11251 (2021)

  11. Levine, S.: Reinforcement learning and control as probabilistic inference: Tutorial and review. arXiv preprint arXiv:1805.00909 (2018)

  12. Mao, H., et al.: Neighborhood cognition consistent multi-agent reinforcement learning. In: AAAI (2020)

    Google Scholar 

  13. Mendonca, R., Rybkin, O., Daniilidis, K., Hafner, D., Pathak, D.: Discovering and achieving goals via world models. Adv. Neural. Inf. Process. Syst. 34, 24379–24391 (2021)

    Google Scholar 

  14. Oliehoek, F.A., Amato, C.: A Concise Introduction to Decentralized POMDPs. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-28929-8

    Book  MATH  Google Scholar 

  15. OroojlooyJadid, A., Hajinezhad, D.: A review of cooperative multi-agent deep reinforcement learning. arXiv preprint arXiv:1908.03963 (2019)

  16. Paszke, A., et al.: Pytorch: an imperative style, high-performance deep learning library. In: Advances in Neural Information Processing Systems, vol. 32 (2019)

    Google Scholar 

  17. Pasztor, B., Bogunovic, I., Krause, A.: Efficient model-based multi-agent mean-field reinforcement learning. arXiv preprint arXiv:2107.04050 (2021)

  18. Rashid, T., Samvelyan, M., Schroeder, C., Farquhar, G., Foerster, J., Whiteson, S.: Qmix: Monotonic value function factorisation for deep multi-agent reinforcement learning. In: International Conference on Machine Learning, pp. 4295–4304. PMLR (2018)

    Google Scholar 

  19. Samvelyan, M., et al.: The starcraft multi-agent challenge. arXiv preprint arXiv:1902.04043 (2019)

  20. Sunehag, P., et al.: Value-decomposition networks for cooperative multi-agent learning. arXiv preprint arXiv:1706.05296 (2017)

  21. Wang, T., Dong, H., Lesser, V.R., Zhang, C.: Roma: multi-agent reinforcement learning with emergent roles. arXiv:abs/2003.08039 (2020)

  22. Wang, T., Gupta, T., Mahajan, A., Peng, B., Whiteson, S., Zhang, C.: Rode: learning roles to decompose multi-agent tasks. arXiv:abs/2010.01523 (2021)

  23. Wang, T., Du, S.S., Torralba, A., Isola, P., Zhang, A., Tian, Y.: Denoised MDPs: learning world models better than the world itself. arXiv preprint arXiv:2206.15477 (2022)

  24. Wang, X., Zhang, Z., Zhang, W.: Model-based multi-agent reinforcement learning: Recent progress and prospects. arXiv preprint arXiv:2203.10603 (2022)

  25. Wen, M., et al.: Multi-agent reinforcement learning is a sequence modeling problem. arXiv preprint arXiv:2205.14953 (2022)

  26. Wu, P., Escontrela, A., Hafner, D., Goldberg, K., Abbeel, P.: Daydreamer: world models for physical robot learning. arXiv preprint arXiv:2206.14176 (2022)

  27. Xu, Y., et al.: Learning general world models in a handful of reward-free deployments. arXiv preprint arXiv:2210.12719 (2022)

  28. Yarats, D., Zhang, A., Kostrikov, I., Amos, B., Pineau, J., Fergus, R.: Improving sample efficiency in model-free reinforcement learning from images. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 35, pp. 10674–10681 (2021)

    Google Scholar 

  29. Ye, Z., Chen, Y., Jiang, X., Song, G., Yang, B., Fan, S.: Improving sample efficiency in multi-agent actor-critic methods. Appl. Intell. 52(4), 3691–3704 (2022)

    Article  Google Scholar 

  30. Yu, C., Velu, A., Vinitsky, E., Wang, Y., Bayen, A., Wu, Y.: The surprising effectiveness of PPO in cooperative, multi-agent games. arXiv preprint arXiv:2103.01955 (2021)

  31. Zhang, K., Yang, Z., Başar, T.: Multi-agent reinforcement learning: a selective overview of theories and algorithms. In: Handbook of Reinforcement Learning and Control, pp. 321–384 (2021)

    Google Scholar 

  32. Zhou, M., et al.: Smarts: scalable multi-agent reinforcement learning training school for autonomous driving. arXiv preprint arXiv:2010.09776 (2020)

Download references

Acknowledgements

This work is supported by the National Key R &D Program of China (No. 2022ZD0116405), the Strategic Priority Research Program of the Chinese Academy of Sciences under Grant (No. XDA27030300), and the Program for National Nature Science Foundation of China (62073324).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dengpeng Xing or Bo Xu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Meng, L. et al. (2023). Filtered Observations for Model-Based Multi-agent Reinforcement Learning. In: Koutra, D., Plant, C., Gomez Rodriguez, M., Baralis, E., Bonchi, F. (eds) Machine Learning and Knowledge Discovery in Databases: Research Track. ECML PKDD 2023. Lecture Notes in Computer Science(), vol 14172. Springer, Cham. https://doi.org/10.1007/978-3-031-43421-1_32

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-43421-1_32

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-43420-4

  • Online ISBN: 978-3-031-43421-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics