Skip to main content

SALAS: Supervised Aspect Learning Improves Abstractive Multi-document Summarization Through Aspect Information Loss

  • Conference paper
  • First Online:
Machine Learning and Knowledge Discovery in Databases: Research Track (ECML PKDD 2023)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 14172))

  • 1450 Accesses

Abstract

Abstractive multi-document summarization (MDS) aims at summarizing and paraphrasing the salient key information in multiple documents. For dealing with the long-input issue brought by multiple documents, most previous work extracts salient sentence-level information from the input documents and then performs summarizing on the extracted information. However, the aspects of documents are neglected. The limited ability to discover the content on certain aspects hampers the key information seeking and ruins the comprehensiveness of the generated summaries. To solve the issue, we propose a novel Supervised Aspect-Learning Abstractive Summarization framework (SALAS) and a new aspect information loss (AILoss) to learn aspect information to supervise the generating process heuristically. Specifically, SALAS adopts three probes to capture aspect information as both constraints of the objective function and supplement information to be expressed in the representations. Aspect information is explicitly discovered and exploited to facilitate generating comprehensive summaries by AILoss. We conduct extensive experiments on three public datasets. The experimental results demonstrate that SALAS outperforms previous state-of-the-art (SOTA) baselines, achieving a new SOTA performance on the three MDS datasets. We make our code for SALAS publicly available (https://github.com/Hytn/AspectSum).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://huggingface.co/models.

  2. 2.

    https://github.com/huggingface/transformers/blob/main/examples/pytorch/summarization/.

References

  1. Ahuja, O., Xu, J., Gupta, A., Horecka, K., Durrett, G.: ASPECTNEWS: aspect-oriented summarization of news documents. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 6494–6506. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.449

  2. Angelidis, S., Amplayo, R.K., Suhara, Y., Wang, X., Lapata, M.: Extractive opinion summarization in quantized transformer spaces. Trans. Assoc. Comput. Linguist. 9, 277–293 (2021). https://doi.org/10.1162/tacl-a-00366

    Article  Google Scholar 

  3. Arora, R., Ravindran, B.: Latent dirichlet allocation and singular value decomposition based multi-document summarization. In: 2008 Eighth IEEE International Conference on Data Mining, pp. 713–718. IEEE, Pisa, Italy (2008). https://doi.org/10.1109/ICDM.2008.55

  4. Beltagy, I., Peters, M.E., Cohan, A.: LongFormer: the long-document transformer. ArXiv (2020). https://doi.org/10.48550/ARXIV.2004.05150

  5. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North, pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423

  6. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.N.: BERT: pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186 (2018)

    Google Scholar 

  7. Erkan, G., Radev, D.R.: LexRank: graph-based lexical centrality as salience in text summarization. J. Artif. Intell. Res. 22, 457–479 (2004). https://doi.org/10.1613/jair.1523

    Article  Google Scholar 

  8. Grail, Q., Perez, J., Gaussier, E.: Globalizing BERT-based transformer architectures for long document summarization. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp. 1792–1810. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.eacl-main.154

  9. Hayashi, H., Budania, P., Wang, P., Ackerson, C., Neervannan, R., Neubig, G.: WikiAsp: a dataset for multi-domain aspect-based summarization. Trans. Assoc. Comput. Linguist. 9, 211–225 (2021). https://doi.org/10.1162/tacl-a-00362

    Article  Google Scholar 

  10. Hu, X., Wen, L., Xu, Y., Zhang, C., Yu, P.: SelfORE: self-supervised relational feature learning for open relation extraction. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 3673–3682. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.299

  11. Jin, H., Wang, T., Wan, X.: Multi-granularity interaction network for extractive and abstractive multi-document summarization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 6244–6254. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.556

  12. Kiyoumarsi, F.: Evaluation of automatic text summarizations based on human summaries. Proc. Soc. Behav. Sci. 192, 83–91 (2015). https://doi.org/10.1016/j.sbspro.2015.06.013

    Article  Google Scholar 

  13. Lewis, M., et al.: BART: denoising sequence-to-sequence pre-training for natural language generation, translation, and comprehension. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 7871–7880 (2020). https://doi.org/10.18653/v1/2020.acl-main.703

  14. Lin, C.Y.: ROUGE: a package for automatic evaluation of summaries. In: Text Summarization Branches Out, pp. 74–81. Association for Computational Linguistics, Barcelona, Spain (2004)

    Google Scholar 

  15. Liu, Y., Lapata, M.: Hierarchical transformers for multi-document summarization. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 5070–5081. Association for Computational Linguistics, Florence, Italy (2019). https://doi.org/10.18653/v1/P19-1500

  16. Liu, Y., Lapata, M.: Text summarization with pretrained encoders. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 3728–3738. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1387

  17. Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. arXiv preprint arXiv:1711.05101 (2017)

  18. Ma, C., Zhang, W.E., Guo, M., Wang, H., Sheng, Q.Z.: Multi-document summarization via deep learning techniques: a survey. ACM Comput. Surv., 3529754 (2022). https://doi.org/10.1145/3529754

  19. Mao, Z., et al.: DYLE: dynamic latent extraction for abstractive long-input summarization. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 1687–1698. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.118

  20. Mihalcea, R., Tarau, P.: TextRank: bringing order into text. In: Proceedings of the 2004 Conference on Empirical Methods in Natural Language Processing, pp. 404–411 (2004)

    Google Scholar 

  21. Over, P., Yen, J.: An introduction to DUC-2004. National Institute of Standards and Technology (2004)

    Google Scholar 

  22. Pennington, J., Socher, R., Manning, C.D.: GloVe: global vectors for word representation. In: Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 1532–1543 (2014). https://doi.org/10.3115/v1/D14-1162

  23. Radev, D.: A common theory of information fusion from multiple text sources step one: cross-document structure. In: 1st SIGdial Workshop on Discourse and Dialogue, pp. 74–83 (2000). https://doi.org/10.3115/1117736.1117745

  24. Shen, C., Cheng, L., Zhou, R., Bing, L., You, Y., Si, L.: MReD: meta-review dataset for structure-controllable text generation. In: Findings of the Association for Computational Linguistics: ACL 2022, pp. 2521–2535. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.findings-acl.198

  25. Wang, W., Pan, S.J., Dahlmeier, D., Xiao, X.: Recursive neural conditional random fields for aspect-based sentiment analysis. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 616–626 (2016). https://doi.org/10.18653/v1/D16-1059

  26. Xu, J., Durrett, G.: Neural extractive text summarization with syntactic compression. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 3290–3301. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1324

  27. Yao, L., Haghighi, A., Riedel, S., McCallum, A.: Structured relation discovery using generative models. In: Proceedings of the Conference on Empirical Methods in Natural Language Processing, pp. 1456–1466. EMNLP ’11, Association for Computational Linguistics, USA (2011)

    Google Scholar 

  28. Zhang, Y., et al.: An exploratory study on long dialogue summarization: what works and what’s next. In: Findings of the Association for Computational Linguistics: EMNLP 2021, pp. 4426–4433. Association for Computational Linguistics, Punta Cana, Dominican Republic (2021). https://doi.org/10.18653/v1/2021.findings-emnlp.377

  29. Zhu, C., Xu, R., Zeng, M., Huang, X.: A hierarchical network for abstractive meeting summarization with cross-domain pretraining. In: Findings of the Association for Computational Linguistics: EMNLP 2020, pp. 194–203. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.findings-emnlp.19

  30. Zhu, F., Tu, S., Shi, J., Li, J., Hou, L., Cui, T.: TWAG: a topic-guided wikipedia abstract generator. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 4623–4635. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.356

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haotian Chen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chen, H., Zhang, H., Guo, H., Yi, S., Chen, B., Zhou, X. (2023). SALAS: Supervised Aspect Learning Improves Abstractive Multi-document Summarization Through Aspect Information Loss. In: Koutra, D., Plant, C., Gomez Rodriguez, M., Baralis, E., Bonchi, F. (eds) Machine Learning and Knowledge Discovery in Databases: Research Track. ECML PKDD 2023. Lecture Notes in Computer Science(), vol 14172. Springer, Cham. https://doi.org/10.1007/978-3-031-43421-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-43421-1_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-43420-4

  • Online ISBN: 978-3-031-43421-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics