Abstract
Abstractive multi-document summarization (MDS) aims at summarizing and paraphrasing the salient key information in multiple documents. For dealing with the long-input issue brought by multiple documents, most previous work extracts salient sentence-level information from the input documents and then performs summarizing on the extracted information. However, the aspects of documents are neglected. The limited ability to discover the content on certain aspects hampers the key information seeking and ruins the comprehensiveness of the generated summaries. To solve the issue, we propose a novel Supervised Aspect-Learning Abstractive Summarization framework (SALAS) and a new aspect information loss (AILoss) to learn aspect information to supervise the generating process heuristically. Specifically, SALAS adopts three probes to capture aspect information as both constraints of the objective function and supplement information to be expressed in the representations. Aspect information is explicitly discovered and exploited to facilitate generating comprehensive summaries by AILoss. We conduct extensive experiments on three public datasets. The experimental results demonstrate that SALAS outperforms previous state-of-the-art (SOTA) baselines, achieving a new SOTA performance on the three MDS datasets. We make our code for SALAS publicly available (https://github.com/Hytn/AspectSum).
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Ahuja, O., Xu, J., Gupta, A., Horecka, K., Durrett, G.: ASPECTNEWS: aspect-oriented summarization of news documents. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 6494–6506. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.449
Angelidis, S., Amplayo, R.K., Suhara, Y., Wang, X., Lapata, M.: Extractive opinion summarization in quantized transformer spaces. Trans. Assoc. Comput. Linguist. 9, 277–293 (2021). https://doi.org/10.1162/tacl-a-00366
Arora, R., Ravindran, B.: Latent dirichlet allocation and singular value decomposition based multi-document summarization. In: 2008 Eighth IEEE International Conference on Data Mining, pp. 713–718. IEEE, Pisa, Italy (2008). https://doi.org/10.1109/ICDM.2008.55
Beltagy, I., Peters, M.E., Cohan, A.: LongFormer: the long-document transformer. ArXiv (2020). https://doi.org/10.48550/ARXIV.2004.05150
Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North, pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423
Devlin, J., Chang, M.W., Lee, K., Toutanova, K.N.: BERT: pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186 (2018)
Erkan, G., Radev, D.R.: LexRank: graph-based lexical centrality as salience in text summarization. J. Artif. Intell. Res. 22, 457–479 (2004). https://doi.org/10.1613/jair.1523
Grail, Q., Perez, J., Gaussier, E.: Globalizing BERT-based transformer architectures for long document summarization. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp. 1792–1810. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.eacl-main.154
Hayashi, H., Budania, P., Wang, P., Ackerson, C., Neervannan, R., Neubig, G.: WikiAsp: a dataset for multi-domain aspect-based summarization. Trans. Assoc. Comput. Linguist. 9, 211–225 (2021). https://doi.org/10.1162/tacl-a-00362
Hu, X., Wen, L., Xu, Y., Zhang, C., Yu, P.: SelfORE: self-supervised relational feature learning for open relation extraction. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 3673–3682. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.299
Jin, H., Wang, T., Wan, X.: Multi-granularity interaction network for extractive and abstractive multi-document summarization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 6244–6254. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.556
Kiyoumarsi, F.: Evaluation of automatic text summarizations based on human summaries. Proc. Soc. Behav. Sci. 192, 83–91 (2015). https://doi.org/10.1016/j.sbspro.2015.06.013
Lewis, M., et al.: BART: denoising sequence-to-sequence pre-training for natural language generation, translation, and comprehension. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 7871–7880 (2020). https://doi.org/10.18653/v1/2020.acl-main.703
Lin, C.Y.: ROUGE: a package for automatic evaluation of summaries. In: Text Summarization Branches Out, pp. 74–81. Association for Computational Linguistics, Barcelona, Spain (2004)
Liu, Y., Lapata, M.: Hierarchical transformers for multi-document summarization. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 5070–5081. Association for Computational Linguistics, Florence, Italy (2019). https://doi.org/10.18653/v1/P19-1500
Liu, Y., Lapata, M.: Text summarization with pretrained encoders. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 3728–3738. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1387
Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. arXiv preprint arXiv:1711.05101 (2017)
Ma, C., Zhang, W.E., Guo, M., Wang, H., Sheng, Q.Z.: Multi-document summarization via deep learning techniques: a survey. ACM Comput. Surv., 3529754 (2022). https://doi.org/10.1145/3529754
Mao, Z., et al.: DYLE: dynamic latent extraction for abstractive long-input summarization. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 1687–1698. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.118
Mihalcea, R., Tarau, P.: TextRank: bringing order into text. In: Proceedings of the 2004 Conference on Empirical Methods in Natural Language Processing, pp. 404–411 (2004)
Over, P., Yen, J.: An introduction to DUC-2004. National Institute of Standards and Technology (2004)
Pennington, J., Socher, R., Manning, C.D.: GloVe: global vectors for word representation. In: Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 1532–1543 (2014). https://doi.org/10.3115/v1/D14-1162
Radev, D.: A common theory of information fusion from multiple text sources step one: cross-document structure. In: 1st SIGdial Workshop on Discourse and Dialogue, pp. 74–83 (2000). https://doi.org/10.3115/1117736.1117745
Shen, C., Cheng, L., Zhou, R., Bing, L., You, Y., Si, L.: MReD: meta-review dataset for structure-controllable text generation. In: Findings of the Association for Computational Linguistics: ACL 2022, pp. 2521–2535. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.findings-acl.198
Wang, W., Pan, S.J., Dahlmeier, D., Xiao, X.: Recursive neural conditional random fields for aspect-based sentiment analysis. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 616–626 (2016). https://doi.org/10.18653/v1/D16-1059
Xu, J., Durrett, G.: Neural extractive text summarization with syntactic compression. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 3290–3301. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1324
Yao, L., Haghighi, A., Riedel, S., McCallum, A.: Structured relation discovery using generative models. In: Proceedings of the Conference on Empirical Methods in Natural Language Processing, pp. 1456–1466. EMNLP ’11, Association for Computational Linguistics, USA (2011)
Zhang, Y., et al.: An exploratory study on long dialogue summarization: what works and what’s next. In: Findings of the Association for Computational Linguistics: EMNLP 2021, pp. 4426–4433. Association for Computational Linguistics, Punta Cana, Dominican Republic (2021). https://doi.org/10.18653/v1/2021.findings-emnlp.377
Zhu, C., Xu, R., Zeng, M., Huang, X.: A hierarchical network for abstractive meeting summarization with cross-domain pretraining. In: Findings of the Association for Computational Linguistics: EMNLP 2020, pp. 194–203. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.findings-emnlp.19
Zhu, F., Tu, S., Shi, J., Li, J., Hou, L., Cui, T.: TWAG: a topic-guided wikipedia abstract generator. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 4623–4635. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.356
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Chen, H., Zhang, H., Guo, H., Yi, S., Chen, B., Zhou, X. (2023). SALAS: Supervised Aspect Learning Improves Abstractive Multi-document Summarization Through Aspect Information Loss. In: Koutra, D., Plant, C., Gomez Rodriguez, M., Baralis, E., Bonchi, F. (eds) Machine Learning and Knowledge Discovery in Databases: Research Track. ECML PKDD 2023. Lecture Notes in Computer Science(), vol 14172. Springer, Cham. https://doi.org/10.1007/978-3-031-43421-1_4
Download citation
DOI: https://doi.org/10.1007/978-3-031-43421-1_4
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-43420-4
Online ISBN: 978-3-031-43421-1
eBook Packages: Computer ScienceComputer Science (R0)