Skip to main content

MMA: Multi-Metric-Autoencoder for Analyzing High-Dimensional and Incomplete Data

  • Conference paper
  • First Online:
Machine Learning and Knowledge Discovery in Databases: Research Track (ECML PKDD 2023)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 14173))

  • 695 Accesses

Abstract

High-dimensional and incomplete (HDI) data usually arise in various complex applications, e.g., bioinformatics and recommender systems, making them commonly heterogeneous and inclusive. Deep neural networks (DNNs)-based approaches have provided state-of-the-art representation learning performance on HDI data. However, most prior studies adopt fixed and exclusive \(L_2\)-norm-oriented loss and regularization terms. Such a single-metric-oriented model yields limited performance on heterogeneous and inclusive HDI data. Motivated by this, we propose a Multi-Metric-Autoencoder (MMA) whose main ideas are two-fold: 1) employing different \(L_p\)-norms to build four variant Autoencoders, each of which resides in a unique metric representation space with different loss and regularization terms, and 2) aggregating these Autoencoders with a tailored, self-adaptive weighting strategy. Theoretical analysis guarantees that our MMA could attain a better representation from a set of dispersed metric spaces. Extensive experiments on four real-world datasets demonstrate that our MMA significantly outperforms seven state-of-the-art models. Our code is available at the link https://github.com/wudi1989/MMA/

This work is supported by the National Natural Science Foundation of China under grant 62176070.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alhayani, B.S., et al.: Visual sensor intelligent module based image transmission in industrial manufacturing for monitoring and manipulation problems. J. Intell. Manuf. 32(2), 597–610 (2021)

    Article  Google Scholar 

  2. Cai, D., Qian, S., Fang, Q., Xu, C.: Heterogeneous hierarchical feature aggregation network for personalized micro-video recommendation. IEEE Trans. Multimedia 24, 805–818 (2021)

    Article  Google Scholar 

  3. Chen, J., Luo, X., Zhou, M.: Hierarchical particle swarm optimization-incorporated latent factor analysis for large-scale incomplete matrices. IEEE Trans. Big Data 8(6), 1524–1536 (2021)

    Google Scholar 

  4. Demšar, J.: Statistical comparisons of classifiers over multiple data sets. J. Mach. Learn. Res. 7, 1–30 (2006)

    MathSciNet  MATH  Google Scholar 

  5. Dong, X., Yu, Z., Cao, W., Shi, Y., Ma, Q.: A survey on ensemble learning. Front. Comp. Sci. 14(2), 241–258 (2020)

    Article  Google Scholar 

  6. Fang, L., Du, B., Wu, C.: Differentially private recommender system with variational autoencoders. Knowl.-Based Syst. 250, 109044 (2022)

    Article  Google Scholar 

  7. Gao, C., et al.: A survey of graph neural networks for recommender systems: Challenges, methods, and directions. ACM Trans. Recommender Syst. (2023). https://doi.org/10.1145/3568022

    Article  Google Scholar 

  8. Gharahighehi, A., Vens, C., Pliakos, K.: Multi-stakeholder news recommendation using hypergraph learning. In: Koprinska, I., et al. (eds.) ECML PKDD 2020. CCIS, vol. 1323, pp. 531–535. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-65965-3_36

    Chapter  Google Scholar 

  9. Han, S.C., Lim, T., Long, S., Burgstaller, B., Poon, J.: Glocal-k: global and local kernels for recommender systems. In: Proceedings of the 30th ACM International Conference on Information & Knowledge Management, pp. 3063–3067 (2021)

    Google Scholar 

  10. Hu, L., Pan, X., Tang, Z., Luo, X.: A fast fuzzy clustering algorithm for complex networks via a generalized momentum method. IEEE Trans. Fuzzy Syst. 30(9), 3473–3485 (2021)

    Article  Google Scholar 

  11. Hu, L., Yang, S., Luo, X., Yuan, H., Sedraoui, K., Zhou, M.: A distributed framework for large-scale protein-protein interaction data analysis and prediction using mapreduce. IEEE/CAA J. Automatica Sinica 9(1), 160–172 (2021)

    Article  Google Scholar 

  12. Hu, L., Yang, S., Luo, X., Zhou, M.: An algorithm of inductively identifying clusters from attributed graphs. IEEE Trans. Big Data 8(2), 523–534 (2020)

    Google Scholar 

  13. Hu, L., Zhang, J., Pan, X., Luo, X., Yuan, H.: An effective link-based clustering algorithm for detecting overlapping protein complexes in protein-protein interaction networks. IEEE Trans. Netw. Sci. Eng. 8(4), 3275–3289 (2021)

    Article  Google Scholar 

  14. Islek, I., Oguducu, S.G.: A hybrid recommendation system based on bidirectional encoder representations. In: Koprinska, I., et al. (eds.) ECML PKDD 2020. CCIS, vol. 1323, pp. 225–236. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-65965-3_14

    Chapter  Google Scholar 

  15. Khan, S., Huh, J., Ye, J.C.: Adaptive and compressive beamforming using deep learning for medical ultrasound. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 67(8), 1558–1572 (2020). https://doi.org/10.1109/TUFFC.2020.2977202

    Article  Google Scholar 

  16. Koren, Y., Bell, R., Volinsky, C.: Matrix factorization techniques for recommender systems. Computer 42(8), 30–37 (2009)

    Article  Google Scholar 

  17. Li, P., Wang, Z., Ren, Z., Bing, L., Lam, W.: Neural rating regression with abstractive tips generation for recommendation. In: Proceedings of the 40th International ACM SIGIR conference on Research and Development in Information Retrieval, pp. 345–354 (2017)

    Google Scholar 

  18. Li, Y., Sun, H., Yan, W., Cui, Q.: R-CTSVM+: robust capped L1-norm twin support vector machine with privileged information. Inf. Sci. 574, 12–32 (2021)

    Article  Google Scholar 

  19. Li, Z., Li, S., Bamasag, O.O., Alhothali, A., Luo, X.: Diversified regularization enhanced training for effective manipulator calibration. IEEE Transactions on Neural Networks and Learning Systems, pp. 1–13 (2022). https://doi.org/10.1109/TNNLS.2022.3153039

  20. Liu, Z., Luo, X., Wang, Z.: Convergence analysis of single latent factor-dependent, nonnegative, and multiplicative update-based nonnegative latent factor models. IEEE Trans. Neural Netw. Learn. Syst. 32(4), 1737–1749 (2020)

    Article  MathSciNet  Google Scholar 

  21. Luo, X., Chen, M., Wu, H., Liu, Z., Yuan, H., Zhou, M.: Adjusting learning depth in nonnegative latent factorization of tensors for accurately modeling temporal patterns in dynamic QoS data. IEEE Trans. Autom. Sci. Eng. 18(4), 2142–2155 (2021)

    Article  Google Scholar 

  22. Luo, X., Wu, H., Li, Z.: NeuLFT: a novel approach to nonlinear canonical polyadic decomposition on high-dimensional incomplete tensors. IEEE Trans. Knowl. Data Eng. 35(6), 6148–6166 (2023)

    Google Scholar 

  23. Luo, X., Zhou, Y., Liu, Z., Hu, L., Zhou, M.: Generalized Nesterov’s acceleration-incorporated, non-negative and adaptive latent factor analysis. IEEE Trans. Serv. Comput. 15(5), 2809–2823 (2021)

    Article  Google Scholar 

  24. Luo, X., Zhou, Y., Liu, Z., Zhou, M.: Fast and accurate non-negative latent factor analysis on high-dimensional and sparse matrices in recommender systems. IEEE Trans. Know. Data Eng. 35, 3897–3911 (2021). https://doi.org/10.1109/TKDE.2021.3125252

  25. Muller, L., Martel, J., Indiveri, G.: Kernelized synaptic weight matrices. In: International Conference on Machine Learning, pp. 3654–3663. PMLR (2018)

    Google Scholar 

  26. Natarajan, S., Vairavasundaram, S., Natarajan, S., Gandomi, A.H.: Resolving data sparsity and cold start problem in collaborative filtering recommender system using linked open data. Expert Syst. Appl. 149, 113248 (2020)

    Article  Google Scholar 

  27. Park, J., Cho, J., Chang, H.J., Choi, J.Y.: Unsupervised hyperbolic representation learning via message passing auto-encoders. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5516–5526 (2021)

    Google Scholar 

  28. Raza, S., Ding, C.: A regularized model to trade-off between accuracy and diversity in a news recommender system. In: 2020 IEEE International Conference on Big Data (Big Data), pp. 551–560. IEEE (2020)

    Google Scholar 

  29. Saberi-Movahed, F., et al.: Dual regularized unsupervised feature selection based on matrix factorization and minimum redundancy with application in gene selection. Knowl.-Based Syst. 256, 109884 (2022)

    Article  Google Scholar 

  30. Sedhain, S., Menon, A.K., Sanner, S., Xie, L.: AutoRec: autoencoders meet collaborative filtering. In: Proceedings of the 24th International Conference on World Wide Web, pp. 111–112 (2015)

    Google Scholar 

  31. Shang, M., Yuan, Y., Luo, X., Zhou, M.: An \(\alpha \)-\(\beta \)-divergence-generalized recommender for highly accurate predictions of missing user preferences. IEEE Trans. Cybern. 52(8), 8006–8018 (2021)

    Article  Google Scholar 

  32. Shao, B., Li, X., Bian, G.: A survey of research hotspots and frontier trends of recommendation systems from the perspective of knowledge graph. Expert Syst. Appl. 165, 113764 (2021)

    Article  Google Scholar 

  33. Shi, Q., Liu, M., Li, S., Liu, X., Wang, F., Zhang, L.: A deeply supervised attention metric-based network and an open aerial image dataset for remote sensing change detection. IEEE Trans. Geosci. Remote Sens. 60, 1–16 (2022). https://doi.org/10.1109/TGRS.2021.3085870

    Article  Google Scholar 

  34. Shi, X., Kang, Q., An, J., Zhou, M.: Novel L1 regularized extreme learning machine for soft-sensing of an industrial process. IEEE Trans. Ind. Inf. 18(2), 1009–1017 (2021)

    Article  Google Scholar 

  35. Song, Y., Zhu, Z., Li, M., Yang, G., Luo, X.: Non-negative latent factor analysis-incorporated and feature-weighted fuzzy double c-means clustering for incomplete data. IEEE Trans. Fuzzy Syst. 30(10), 4165–4176 (2022)

    Article  Google Scholar 

  36. Tay, Y., Anh Tuan, L., Hui, S.C.: Latent relational metric learning via memory-based attention for collaborative ranking. In: Proceedings of the 2018 World Wide Web Conference, pp. 729–739 (2018)

    Google Scholar 

  37. Wang, H., Hong, Z., Hong, M.: Research on product recommendation based on matrix factorization models fusing user reviews. Appl. Soft Comput. (2022). https://doi.org/10.1016/j.asoc.2022.108971

    Article  Google Scholar 

  38. Wang, S., Cao, J., Yu, P.S.: Deep learning for spatio-temporal data mining: a survey. IEEE Trans. Knowl. Data Eng. 34(8), 3681–3700 (2022). https://doi.org/10.1109/TKDE.2020.3025580

    Article  Google Scholar 

  39. Wang, X., Chen, H., Zhou, Y., Ma, J., Zhu, W.: Disentangled representation learning for recommendation. IEEE Trans. Pattern Anal. Mach. Intell. 45(1), 408–424 (2022)

    Article  Google Scholar 

  40. Wu, D., Luo, X.: Robust latent factor analysis for precise representation of high-dimensional and sparse data. IEEE/CAA J. Automatica Sinica 8(4), 796–805 (2021)

    Article  MathSciNet  Google Scholar 

  41. Wu, D., Luo, X., He, Y., Zhou, M.: A prediction-sampling-based multilayer-structured latent factor model for accurate representation to high-dimensional and sparse data. IEEE Trans. Neural Netw. Learn. Syst. 1–14 (2022). https://doi.org/10.1109/TNNLS.2022.3200009

  42. Wu, D., Zhang, P., He, Y., Luo, X.: A double-space and double-norm ensembled latent factor model for highly accurate web service QoS prediction. IEEE Trans. Serv. Comput. (2022). https://doi.org/10.1109/TSC.2022.3178543

    Article  Google Scholar 

  43. Wu, H., Luo, X., Zhou, M., Rawa, M.J., Sedraoui, K., Albeshri, A.: A PID-incorporated latent factorization of tensors approach to dynamically weighted directed network analysis. IEEE/CAA J. Automatica Sinica 9(3), 533–546 (2021)

    Article  Google Scholar 

  44. Yuan, Y., He, Q., Luo, X., Shang, M.: A multilayered-and-randomized latent factor model for high-dimensional and sparse matrices. IEEE Trans. Big Data 8(3), 784–794 (2020)

    Article  Google Scholar 

  45. Zhang, M., Chen, Y.: Inductive matrix completion based on graph neural networks. In: International Conference on Learning Representations (2020). https://openreview.net/forum?id=ByxxgCEYDS

  46. Zhang, S., Yao, L., Wu, B., Xu, X., Zhang, X., Zhu, L.: Unraveling metric vector spaces with factorization for recommendation. IEEE Trans. Ind. Inf. 16(2), 732–742 (2019)

    Article  Google Scholar 

  47. Zheng, Y., Wang, D.X.: A survey of recommender systems with multi-objective optimization. Neurocomputing 474, 141–153 (2022)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Di Wu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Liang, C., Wu, D., He, Y., Huang, T., Chen, Z., Luo, X. (2023). MMA: Multi-Metric-Autoencoder for Analyzing High-Dimensional and Incomplete Data. In: Koutra, D., Plant, C., Gomez Rodriguez, M., Baralis, E., Bonchi, F. (eds) Machine Learning and Knowledge Discovery in Databases: Research Track. ECML PKDD 2023. Lecture Notes in Computer Science(), vol 14173. Springer, Cham. https://doi.org/10.1007/978-3-031-43424-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-43424-2_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-43423-5

  • Online ISBN: 978-3-031-43424-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics