Skip to main content

Semi-Supervised Social Bot Detection with Initial Residual Relation Attention Networks

  • Conference paper
  • First Online:
Machine Learning and Knowledge Discovery in Databases: Applied Data Science and Demo Track (ECML PKDD 2023)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 14174))

  • 928 Accesses

Abstract

Social bot detection is a challenging task and receives extensive attention in social security. Previous researches for this task often assume the labeled samples are abundant, which neglects the fact that labels of social bots are usually hard to derive from the real world. Meanwhile, graph neural networks (GNNs) have recently been applied to bot detection. Whereas most GNNs are based on the homophily assumption, where nodes of the same type are more likely to connect to each other. So methods relying on these two assumptions will degrade while encountering graphs with heterophily or lack of labeled data. To solve these challenges above, we analyze human-bot networks and propose SIRAN, which combines relation attention with initial residual connection to reduce and prevent the noise aggregated from neighbors to improve the capability of distinguishing different kinds of nodes on social graphs with heterophily. Then we use a consistency loss to boost the detection performance of the model for limited annotated data. Extensive experiments on two publicly available and independent social bot detection datasets illustrate SIRAN achieves state-of-the-art performance. Finally, further studies demonstrate the effectiveness of our model as well. We have deployed SIRAN online: https://botdetection.aminer.cn/robotmain.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abu-El-Haija, S., et al.: MixHop: higher-order graph convolutional architectures via sparsified neighborhood mixing. In: International Conference on Machine Learning, pp. 21–29. PMLR (2019)

    Google Scholar 

  2. Ali Alhosseini, S., Bin Tareaf, R., Najafi, P., Meinel, C.: Detect me if you can: spam bot detection using inductive representation learning. In: Companion Proceedings of The 2019 World Wide Web Conference, pp. 148–153 (2019)

    Google Scholar 

  3. Alothali, E., Zaki, N., Mohamed, E.A., Alashwal, H.: Detecting social bots on twitter: a literature review. In: 2018 International Conference on Innovations in Information Technology (IIT), pp. 175–180. IEEE (2018)

    Google Scholar 

  4. Bojchevski, A., Shchur, O., Zügner, D., Günnemann, S.: NetGAN: generating graphs via random walks. In: International Conference on Machine Learning, pp. 610–619. PMLR (2018)

    Google Scholar 

  5. Chen, J., Ma, T., Xiao, C.: FastGCN: fast learning with graph convolutional networks via importance sampling. arXiv preprint arXiv:1801.10247 (2018)

  6. Chien, E., Peng, J., Li, P., Milenkovic, O.: Adaptive universal generalized pagerank graph neural network. arXiv preprint arXiv:2006.07988 (2020)

  7. Chu, Z., Gianvecchio, S., Wang, H., Jajodia, S.: Detecting automation of twitter accounts: are you a human, bot, or cyborg? IEEE Trans. Dependable Secure Comput. 9(6), 811–824 (2012)

    Article  Google Scholar 

  8. Ciotti, V., Bonaventura, M., Nicosia, V., Panzarasa, P., Latora, V.: Homophily and missing links in citation networks. EPJ Data Sci. 5, 1–14 (2016)

    Article  Google Scholar 

  9. Cresci, S.: A decade of social bot detection. Commun. ACM 63(10), 72–83 (2020)

    Article  Google Scholar 

  10. Feng, S., Tan, Z., Li, R., Luo, M.: Heterogeneity-aware twitter bot detection with relational graph transformers. arXiv preprint arXiv:2109.02927 (2021)

  11. Feng, S., et al.: TwiBot-22: towards graph-based twitter bot detection. arXiv preprint arXiv:2206.04564 (2022)

  12. Feng, S., Wan, H., Wang, N., Li, J., Luo, M.: TwiBot-20: a comprehensive twitter bot detection benchmark. In: Proceedings of the 30th ACM International Conference on Information & Knowledge Management, pp. 4485–4494 (2021)

    Google Scholar 

  13. Feng, W., et al.: Grand+: scalable graph random neural networks. arXiv preprint arXiv:2203.06389 (2022)

  14. Feng, W., et al.: Graph random neural networks for semi-supervised learning on graphs. In: NeurIPS2020, pp. 22092–22103 (2020)

    Google Scholar 

  15. Ferrara, E.: Disinformation and social bot operations in the run up to the 2017 French presidential election. arXiv preprint arXiv:1707.00086 (2017)

  16. Gallicchio, C., Micheli, A.: Graph echo state networks. In: The 2010 International Joint Conference on Neural Networks (IJCNN), pp. 1–8. IEEE (2010)

    Google Scholar 

  17. Guo, S., Lin, Y., Feng, N., Song, C., Wan, H.: Attention based spatial-temporal graph convolutional networks for traffic flow forecasting. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 922–929 (2019)

    Google Scholar 

  18. Himelein-Wachowiak, M., et al.: Bots and misinformation spread on social media: implications for COVID-19. J. Med. Internet Res. 23(5), e26933 (2021). https://doi.org/10.2196/26933. www.jmir.org/2021/5/e26933

  19. Jarynowski, A.: Conflicts driven pandemic and war issues in social media via multi-layer approach of German twitter (2022)

    Google Scholar 

  20. Kelman, H.C.: Compliance, identification, and internalization three processes of attitude change. J. Conflict Resolut. 2(1), 51–60 (1958)

    Article  Google Scholar 

  21. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

  22. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:1609.02907 (2016)

  23. Kudugunta, S., Ferrara, E.: Deep neural networks for bot detection. Inf. Sci. 467, 312–322 (2018)

    Article  Google Scholar 

  24. Li, Y., Tarlow, D., Brockschmidt, M., Zemel, R.: Gated graph sequence neural networks. arXiv preprint arXiv:1511.05493 (2015)

  25. Lim, D., et al.: Large scale learning on non-homophilous graphs: new benchmarks and strong simple methods. In: Advances in Neural Information Processing Systems 34 (2021)

    Google Scholar 

  26. McPherson, M., Smith-Lovin, L., Cook, J.M.: Birds of a feather: homophily in social networks. Ann. Rev. Sociol. 27(1), 415–444 (2001)

    Article  Google Scholar 

  27. Page, L., Brin, S., Motwani, R., Winograd, T.: The pagerank citation ranking: bringing order to the web. Tech. Rep, Stanford InfoLab (1999)

    Google Scholar 

  28. Ping, H., Qin, S.: A social bots detection model based on deep learning algorithm. In: 2018 IEEE 18th International Conference on Communication Technology (ICCT), pp. 1435–1439. IEEE (2018)

    Google Scholar 

  29. Purtill, J.: Twitter bot network amplifying Russian disinformation about Ukraine war, researcher says (2022). www.abc.net.au/news/science/2022-03-30/ukraine-war-twitter-bot-network-amplifies-russian-disinformation/100944970. Accessed 05 Feb 2023

  30. Schlichtkrull, M., Kipf, T.N., Bloem, P., van den Berg, R., Titov, I., Welling, M.: Modeling relational data with graph convolutional networks. In: Gangemi, A., et al. (eds.) ESWC 2018. LNCS, vol. 10843, pp. 593–607. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-93417-4_38

    Chapter  Google Scholar 

  31. Shi, W., Liu, D., Yang, J., Zhang, J., Wen, S., Su, J.: Social bots’ sentiment engagement in health emergencies: a topic-based analysis of the COVID-19 pandemic discussions on twitter. Int. J. Environ. Res. Public Health 17(22), 8701 (2020)

    Article  Google Scholar 

  32. Simonovsky, M., Komodakis, N.: GraphVAE: towards generation of small graphs using variational autoencoders. In: Kůrková, V., Manolopoulos, Y., Hammer, B., Iliadis, L., Maglogiannis, I. (eds.) ICANN 2018. LNCS, vol. 11139, pp. 412–422. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01418-6_41

    Chapter  Google Scholar 

  33. Smart, B., Watt, J., Benedetti, S., Mitchell, L., Roughan, M.: # istandwithputin versus# istandwithukraine: the interaction of bots and humans in discussion of the Russia/Ukraine war. arXiv preprint arXiv:2208.07038 (2022)

  34. Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.: Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 15(1), 1929–1958 (2014)

    MathSciNet  MATH  Google Scholar 

  35. Tang, J., Sun, J., Wang, C., Yang, Z.: Social influence analysis in large-scale networks. In: Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 807–816 (2009)

    Google Scholar 

  36. Veličković, P., Cucurull, G., Casanova, A., Romero, A., Lio, P., Bengio, Y.: Graph attention networks. arXiv preprint arXiv:1710.10903 (2017)

  37. Wu, Z., Pan, S., Chen, F., Long, G., Zhang, C., Philip, S.Y.: A comprehensive survey on graph neural networks. IEEE Trans. Neural Netw. Learn. Syst. 32(1), 4–24 (2020)

    Article  MathSciNet  Google Scholar 

  38. Xu, K., Li, C., Tian, Y., Sonobe, T., Kawarabayashi, K.i., Jegelka, S.: Representation learning on graphs with jumping knowledge networks. In: International Conference on Machine Learning, pp. 5453–5462. PMLR (2018)

    Google Scholar 

  39. Yan, S., Xiong, Y., Lin, D.: Spatial temporal graph convolutional networks for skeleton-based action recognition. In: Thirty-second AAAI Conference on Artificial Intelligence (2018)

    Google Scholar 

  40. Yang, K.C., Hui, P.M., Menczer, F.: Bot electioneering volume: visualizing social bot activity during elections. In: Companion Proceedings of The 2019 World Wide Web Conference, pp. 214–217 (2019)

    Google Scholar 

  41. Zheng, X., Liu, Y., Pan, S., Zhang, M., Jin, D., Yu, P.S.: Graph neural networks for graphs with heterophily: a survey. arXiv preprint arXiv:2202.07082 (2022)

  42. Zhou, J., et al.: Graph neural networks: a review of methods and applications. AI Open 1, 57–81 (2020)

    Article  Google Scholar 

  43. Zhu, J., Yan, Y., Zhao, L., Heimann, M., Akoglu, L., Koutra, D.: Beyond homophily in graph neural networks: current limitations and effective designs. Adv. Neural. Inf. Process. Syst. 33, 7793–7804 (2020)

    Google Scholar 

Download references

Acknowledgments

This work was supported by Natural Science Foundation of China (NSFC) 61836013, 61825602, 62276148, and China Postdoctoral Science Foundation (2022 M711814).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jie Tang .

Editor information

Editors and Affiliations

Ethics declarations

Ethics Statement

This work aims to propose a semi-supervised bot detection framework with heterophily, which will protect people from being disturbed by bots and ensure social security. We have deployed SIRAN online and it has been widely used. To the best of our knowledge, SIRAN currently ranks No.1 in Baidu (https://www.baidu.com/) and Google (https://www.google.com/) searches. However, as we know that “A coin has two sides", bot creators can also use SIRAN to improve their bots’ performance. To alleviate this problem, we have strengthened the authentication management of APIs.

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhou, M., Feng, W., Zhu, Y., Zhang, D., Dong, Y., Tang, J. (2023). Semi-Supervised Social Bot Detection with Initial Residual Relation Attention Networks. In: De Francisci Morales, G., Perlich, C., Ruchansky, N., Kourtellis, N., Baralis, E., Bonchi, F. (eds) Machine Learning and Knowledge Discovery in Databases: Applied Data Science and Demo Track. ECML PKDD 2023. Lecture Notes in Computer Science(), vol 14174. Springer, Cham. https://doi.org/10.1007/978-3-031-43427-3_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-43427-3_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-43426-6

  • Online ISBN: 978-3-031-43427-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics