Skip to main content

On Calibration of Mathematical Finance Models by Hypernetworks

  • Conference paper
  • First Online:
Machine Learning and Knowledge Discovery in Databases: Applied Data Science and Demo Track (ECML PKDD 2023)

Abstract

The process of fitting mathematical finance (MF) models for option pricing - known as calibration - is expensive because evaluating the pricing function usually requires Monte-Carlo sampling. Inspired by the success of deep learning for simulation, we present a hypernetwork based approach to improve the efficiency of calibration by several orders of magnitude. We first introduce a proxy neural network to mimic the behaviour of a given mathematical finance model. The parameters of this proxy network are produced by a hyper-network conditioned on the parameters of the corresponding MF model. Training the hyper network with pseudo-data fits a family of proxy networks that can mimic any MF model given its parameters, and produce accurate prices. This amortises the cost of MF model fitting, which can now be performed rapidly for any asset by optimising w.r.t. the input of the hypernetwork. Our method is evaluated with S &P 500 index option data covering three million contracts over 15 years, and the empirical results show it performs very closely to the gold standard of calibrating the mathematical finance models directly, while boosting the speed of calibration by 500 times. The code is released at https://github.com/qmfin/HyperCalibration.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Battaglia, P., Pascanu, R., Lai, M., Jimenez Rezende, D., Kavukcuoglu, K.: Interaction networks for learning about objects, relations and physics. In: NIPS (2016)

    Google Scholar 

  2. Bayer, C., Friz, P., Gatheral, J.: Pricing under rough volatility. Quant. Finance 16(6), 887–904 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bayer, C., Friz, P., Gatheral, J.: Pricing under rough volatility. Quant. Finance 16(6), 887–904 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bayer, C., Horvath, B., Muguruza, A., Stemper, B., Tomas, M.: On deep calibration of (rough) stochastic volatility models. arXiv preprint arXiv:1908.08806 (2019)

  5. Benth, F.E., Detering, N., Lavagnini, S.: Accuracy of deep learning in calibrating HJM forward curves. Digital Finance 3(3), 209–248 (2021)

    Article  Google Scholar 

  6. Black, F., Scholes, M.: The pricing of options and corporate liabilities. J. Polit. Econ. 81(3), 637–654 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  7. Carrasco-Davis, R., et al.: Deep learning for image sequence classification of astronomical events. Publ. Astron. Soc. Pac. 131(1004), 108006 (2019)

    Article  Google Scholar 

  8. Day, B., Norcliffe, A., Moss, J., Liò, P.: Meta-learning using privileged information for dynamics. In: ICLR (2021)

    Google Scholar 

  9. Di, X., Yu, P.: Deep reinforcement learning for furniture layout simulation in indoor graphics scenes. In: ICLR (2021)

    Google Scholar 

  10. El Euch, O., Rosenbaum, M.: The characteristic function of rough heston models. Math. Financ. 29(1), 3–38 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  11. Gatheral, J.: Efficient simulation of affine forward variance models (2022)

    Google Scholar 

  12. Ha, D., Dai, A., Le, Q.V.: Hypernetworks. In: ICLR (2017)

    Google Scholar 

  13. Hernandez, A.: Model calibration with neural networks (2016)

    Google Scholar 

  14. Heston, S.L.: A closed-form solution for options with stochastic volatility with applications to bond and currency options. Rev. Financial Stud. 6(2), 327–343 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  15. Heston, S.L.: A closed-form solution for options with stochastic volatility with applications to bond and currency options. Rev. Financial Stud. 6(2), 327–343 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  16. Horvath, B., Muguruza, A., Tomas, M.: Deep learning volatility: a deep neural network perspective on pricing and calibration in (rough) volatility models. Quant. Finance 21(1), 11–27 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  17. Jacquier, A., Martini, C., Muguruza, A.: On VIX futures in the rough Bergomi model. Quant. Finance 18(1), 45–61 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  18. Jacquier, A., Pakkanen, M.S., Stone, H.: Pathwise large deviations for the rough Bergomi model. J. Appl. Probab. 55(4), 1078–1092 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  19. Johnson, H., Shanno, D.: Option pricing when the variance is changing. J. Financial Quant. Anal. 22(2), 143–151 (1987)

    Article  Google Scholar 

  20. Kou, S.G.: A jump-diffusion model for option pricing. Manage. Sci. 48(8), 1086–1101 (2002)

    Article  MATH  Google Scholar 

  21. Matsuo, M., Fukami, K., Nakamura, T., Morimoto, M., Fukagata, K.: Supervised convolutional networks for vol-umetric data enrichment from limited sec-tional data with adaptive super resolution. In: ICLR (2021)

    Google Scholar 

  22. McCrickerd, R., Pakkanen, M.S.: Turbocharging Monte Carlo pricing for the rough Bergomi model. Quant. Finance 18(11), 1877–1886 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  23. Peurifoy, J., et al.: Nanophotonic particle simulation and inverse design using artificial neural networks. Sci. Adv. 4(6) (2018)

    Google Scholar 

  24. Quilodrán-Casas, C., Arcucci, R., Mottet, L., Guo, Y., Pain, C.: Adversarial autoencoders and adversarial lstm for improved forecasts of urban air pollution simulations. In: ICLR (2021)

    Google Scholar 

  25. Sanchez-Gonzalez, A., et al.: Graph networks as learnable physics engines for inference and control. In: ICML (2018)

    Google Scholar 

  26. Schütt, K., Kindermans, P.J., Sauceda Felix, H.E., Chmiela, S., Tkatchenko, A., Müller, K.R.: Schnet: A continuous-filter convolutional neural network for modeling quantum interactions. In: NIPS (2017)

    Google Scholar 

  27. Stachenfeld, K., et al.: Learned coarse models for efficient turbulence simulation. In: ICLR (2021)

    Google Scholar 

  28. Wang, R., Kashinath, K., Mustafa, M., Albert, A., Yu, R.: Towards physics-informed deep learning for turbulent flow prediction. In: KDD (2020)

    Google Scholar 

  29. Willems, S.: Asian option pricing with orthogonal polynomials. Quant. Finance 19(4), 605–618 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  30. Xiao, Z., Zhang, C.: Construction of meteorological simulation knowledge graph based on deep learning method. Sustainability 13(3), 1311 (2021)

    Article  Google Scholar 

  31. Yan, G., Hanson, F.B.: Option pricing for a stochastic-volatility jump-diffusion model with log-uniform jump-amplitudes. In: ACC (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongxin Yang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yang, Y., Hospedales, T.M. (2023). On Calibration of Mathematical Finance Models by Hypernetworks. In: De Francisci Morales, G., Perlich, C., Ruchansky, N., Kourtellis, N., Baralis, E., Bonchi, F. (eds) Machine Learning and Knowledge Discovery in Databases: Applied Data Science and Demo Track. ECML PKDD 2023. Lecture Notes in Computer Science(), vol 14174. Springer, Cham. https://doi.org/10.1007/978-3-031-43427-3_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-43427-3_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-43426-6

  • Online ISBN: 978-3-031-43427-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics