Skip to main content

Context-Aware Deep Time-Series Decomposition for Anomaly Detection in Businesses

  • Conference paper
  • First Online:
Machine Learning and Knowledge Discovery in Databases: Applied Data Science and Demo Track (ECML PKDD 2023)

Abstract

Detecting anomalies in time series has become increasingly challenging as data collection technology develops, especially in real-world communication services, which require contextual information for precise prediction. To address this challenge, researchers usually use time-series decomposition to reveal underlying patterns, e.g., trends and seasonality. However, existing decomposition-based anomaly detectors do not explicitly consider such contextual information, limiting their ability to correctly detect contextual cases. This paper proposes Time-CAD, a new context-aware deep time-series decomposition framework to detect anomalies for a more practical scenario in real-world businesses. We verify the effectiveness of the novel design for integrating contextual information into deep time-series decomposition through extensive experiments on four real-world benchmarks, demonstrating improvements of up to \(46\%\) in time-series aware \(F_1\) score on average.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    A univariate time series is a special case of a multivariate time series when \(M=1\).

  2. 2.

    https://github.com/NetManAIOps/KPI-Anomaly-Detection.

  3. 3.

    https://aihub.or.kr/aihubdata/data/list.do.

  4. 4.

    https://research.unsw.edu.au/projects/toniot-datasets.

  5. 5.

    https://time-cad.web.app.

References

  1. Abdulaal, A., Liu, Z., Lancewicki, T.: Practical approach to asynchronous multivariate time series anomaly detection and localization. In: ACM SIGKDD (2021)

    Google Scholar 

  2. Audibert, J., Michiardi, P., Guyard, F., Marti, S., Zuluaga, M.A.: USAD: unsupervised anomaly detection on multivariate time series. In: ACM SIGKDD (2020)

    Google Scholar 

  3. Bergmann, P., Löwe, S., Fauser, M., Sattlegger, D., Steger, C.: Improving unsupervised defect segmentation by applying structural similarity to autoencoders. arXiv:1807.02011 (2018)

  4. Blázquez-García, A., Conde, A., Mori, U., Lozano, J.A.: A review on outlier/anomaly detection in time series data. ACM CSUR 54(3) (2021)

    Google Scholar 

  5. Braei, M., Wagner, S.: Anomaly detection in univariate time-series: a survey on the state-of-the-art. arXiv:2004.00433 (2020)

  6. Breunig, M.M., Kriegel, H.P., Ng, R.T., Sander, J.: LOF: identifying density-based local outliers. In: ACM SIGMOD (2000)

    Google Scholar 

  7. Chandola, V.: Anomaly Detection for Symbolic Sequences and Time Series Data. University of Minnesota (2009)

    Google Scholar 

  8. Cho, K., et al.: Learning phrase representations using rnn encoder-decoder for statistical machine translation. arXiv:1406.1078 (2014)

  9. Choi, K., Yi, J., Park, C., Yoon, S.: Deep learning for anomaly detection in time-series data: Review, analysis, and guidelines. IEEE Access (2021)

    Google Scholar 

  10. Cleveland, R.B., Cleveland, W.S., McRae, J.E., Terpenning, I.: STL: A seasonal-trend decomposition. J. Off. Stat 6(1) (1990)

    Google Scholar 

  11. Darban, Z.Z., Webb, G.I., Pan, S., Aggarwal, C.C., Salehi, M.: Deep learning for time series anomaly detection: a survey. arXiv:2211.05244 (2022)

  12. Ester, M., Kriegel, H.P., Sander, J., Xu, X., et al.: A density-based algorithm for discovering clusters in large spatial databases with noise. In: ACM SIGKDD (1996)

    Google Scholar 

  13. Farshchi, M., et al.: Contextual anomaly detection for a critical industrial system based on logs and metrics. In: EDCC (2018)

    Google Scholar 

  14. Feng, C., Tian, P.: Time series anomaly detection for cyber-physical systems via neural system identification and bayesian filtering. In: ACM SIGKDD (2021)

    Google Scholar 

  15. Garg, A., Zhang, W., Samaran, J., Savitha, R., Foo, C.S.: An evaluation of anomaly detection and diagnosis in multivariate time series. IEEE Trans. Neural Netw. Learn. Syst. (2021)

    Google Scholar 

  16. Hawkins, D.M.: Identification of Outliers, vol. 11. Springer (1980). https://doi.org/10.1007/978-94-015-3994-4

  17. Hochenbaum, J., Vallis, O.S., Kejariwal, A.: Automatic anomaly detection in the cloud via statistical learning. arXiv:1704.07706 (2017)

  18. Hwang, W.S., Yun, J.H., Kim, J., Kim, H.C.: Time-series aware precision and recall for anomaly detection: Considering variety of detection result and addressing ambiguous labeling. In: CIKM (2019)

    Google Scholar 

  19. Kieu, T., Yang, B., Guo, C., Jensen, C.S.: Outlier detection for time series with recurrent autoencoder ensembles. In: IJCAI (2019)

    Google Scholar 

  20. Li, Z., et al.: Multivariate time series anomaly detection and interpretation using hierarchical inter-metric and temporal embedding. In: ACM SIGKDD (2021)

    Google Scholar 

  21. Liu, F.T., Ting, K.M., Zhou, Z.H.: Isolation forest. In: IEEE ICDM (2008)

    Google Scholar 

  22. Moustafa, N.: A new distributed architecture for evaluating ai-based security systems at the edge: network ton_iot datasets. SCS 72 (2021)

    Google Scholar 

  23. Ren, H., et al.: Time-series anomaly detection service at microsoft. In: ACM SIGKDD (2019)

    Google Scholar 

  24. Rousseeuw, P.J., Leroy, A.M.: Robust Regression and Outlier Detection, vol. 589. John wiley & sons (2005)

    Google Scholar 

  25. Schölkopf, B., et al.: Support vector method for novelty detection. In: NeurIPS (1999)

    Google Scholar 

  26. Schuster, M., Paliwal, K.K.: Bidirectional recurrent neural networks. IEEE Trans. Signal Process. 45(11) (1997)

    Google Scholar 

  27. Shen, L., Li, Z., Kwok, J.: Timeseries anomaly detection using temporal hierarchical one-class network. In: NeurIPS (2020)

    Google Scholar 

  28. Shen, L., Yu, Z., Ma, Q., Kwok, J.T.: Time series anomaly detection with multiresolution ensemble decoding. In: AAAI (2021)

    Google Scholar 

  29. Su, Y., Zhao, Y., Niu, C., Liu, R., Sun, W., Pei, D.: Robust anomaly detection for multivariate time series through stochastic recurrent neural network. In: ACM SIGKDD (2019)

    Google Scholar 

  30. Taylor, S.J., Letham, B.: Forecasting at scale. Am. Stat. 72(1) (2018)

    Google Scholar 

  31. Theodosiou, M.: Forecasting monthly and quarterly time series using stl decomposition. Int. J. Forecast. 27(4) (2011)

    Google Scholar 

  32. Tuli, S., Casale, G., Jennings, N.R.: TranAD: deep transformer networks for anomaly detection in multivariate time series data. VLDB Endow. 15(6), 1201–1214 (2022)

    Article  Google Scholar 

  33. Wen, Q., Gao, J., Song, X., Sun, L., Xu, H., Zhu, S.: RobustSTL: a robust seasonal-trend decomposition algorithm for long time series. In: AAAI (2019)

    Google Scholar 

  34. Wen, Q., Zhang, Z., Li, Y., Sun, L.: Fast RobustSTL: efficient and robust seasonal-trend decomposition for time series with complex patterns. In: ACM SIGKDD (2020)

    Google Scholar 

  35. Xu, H., et al.: Unsupervised anomaly detection via variational auto-encoder for seasonal KPIs in web applications. In: WWW (2018)

    Google Scholar 

  36. Xu, J., Wu, H., Wang, J., Long, M.: Anomaly transformer: time series anomaly detection with association discrepancy. In: ICLR (2022)

    Google Scholar 

  37. Yoo, Y.H., Kim, U.H., Kim, J.H.: Recurrent reconstructive network for sequential anomaly detection. In: IEEE CYB (2019)

    Google Scholar 

  38. Zhang, C., Zhou, T., Wen, Q., Sun, L.: TFAD: a decomposition time series anomaly detection architecture with time-frequency analysis. In: CIKM, pp. 2497–2507 (2022)

    Google Scholar 

  39. Zhang, C., et al.: A deep neural network for unsupervised anomaly detection and diagnosis in multivariate time series data. In: AAAI (2019)

    Google Scholar 

  40. Zhao, H., et al.: Multivariate time-series anomaly detection via graph attention network. In: IEEE ICDM (2020)

    Google Scholar 

  41. Zhou, B., Liu, S., Hooi, B., Cheng, X., Ye, J.: BeatGAN: anomalous rhythm detection using adversarially generated time series. In: IJCAI, pp. 4433–4439 (2019)

    Google Scholar 

Download references

Acknowledgments

This work was partly supported by Mobile eXperience Business, Samsung Electronics Co., Ltd. (Real-time Service Incident Prediction Development) and the National Research Foundation of Korea (NRF) grant funded by the Korea government (Ministry of Science and ICT) (No. 2023R1A2C 2003690).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jae-Gil Lee .

Editor information

Editors and Affiliations

Ethics declarations

Ethical Statement

This work adheres to ethical standards and guidelines for scientific research. We use publicly available datasets and obtain all necessary permissions and approvals before conducting the experiments and data collection. Therefore, we ensure the privacy and anonymity of all human participants involved in the data collection process. In particular, the RCS and KPI datasets are the communication service datasets significantly associated with real users. Both RCS and KPI datasets were completely anonymized with their types and features before we received them. Our research aims to advance the field of anomaly detection having critical applications in various domains, such as finance, healthcare, and cyber security. However, there might be potential malicious impacts when inappropriately using our work. For example, the advancement and findings from Time-CAD might be adversely exploited for devising more subtle and sophisticated attacks or deceptions.

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Nam, Y., Trirat, P., Kim, T., Lee, Y., Lee, JG. (2023). Context-Aware Deep Time-Series Decomposition for Anomaly Detection in Businesses. In: De Francisci Morales, G., Perlich, C., Ruchansky, N., Kourtellis, N., Baralis, E., Bonchi, F. (eds) Machine Learning and Knowledge Discovery in Databases: Applied Data Science and Demo Track. ECML PKDD 2023. Lecture Notes in Computer Science(), vol 14174. Springer, Cham. https://doi.org/10.1007/978-3-031-43427-3_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-43427-3_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-43426-6

  • Online ISBN: 978-3-031-43427-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics