Skip to main content

Ordinal Regression for Difficulty Prediction of StepMania Levels

  • Conference paper
  • First Online:
Machine Learning and Knowledge Discovery in Databases: Applied Data Science and Demo Track (ECML PKDD 2023)

Abstract

StepMania is a popular open-source clone of a rhythm-based video game. As is common in popular games, there is a large number of community-designed levels. It is often difficult for players and level authors to determine the difficulty level of such community contributions. In this work, we formalize and analyze the difficulty prediction task on StepMania levels as an ordinal regression (OR) task. We standardize a more extensive and diverse selection of this data resulting in five data sets, two of which are extensions of previous work. We evaluate many competitive OR and non-OR models, demonstrating that neural network-based models significantly outperform the state of the art and that StepMania-level data makes for an excellent test bed for deep OR models. We conclude with a user experiment showing our models’ superhuman performance.

B. J. Franks and B. Dinkelmann—Equally contributions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://search.stepmaniaonline.net/.

  2. 2.

    https://github.com/benjamin-dinkelmann/difficulty-estimation-stepmania/.

  3. 3.

    https://www.stepmania.com/.

  4. 4.

    https://search.stepmaniaonline.net/.

  5. 5.

    https://zenius-i-vanisher.com.

  6. 6.

    https://ddrillini.club/.

References

  1. Agarwal, A., Davis, J.T., Ward, T.: Supporting ordinal four-state classification decisions using neural networks. Inf. Technol. Manage. 2(1), 5–26 (2001)

    Article  Google Scholar 

  2. Armstrong, B.G., Sloan, M.: Ordinal regression models for epidemiologic data. Am. J. Epidemiol. 129(1), 191–204 (1989)

    Article  Google Scholar 

  3. Brown, T., et al.: Language models are few-shot learners. Adv. Neural. Inf. Process. Syst. 33, 1877–1901 (2020)

    Google Scholar 

  4. Bürkner, P.C., Vuorre, M.: Ordinal regression models in psychology: a tutorial. Adv. Methods Pract. Psychol. Sci. 2(1), 77–101 (2019)

    Article  Google Scholar 

  5. Caronongan, A.P., Marcos, N.A.: Predicting chart difficulty in rhythm games through classification using chart pattern derived attributes. In: Alfred, R., Iida, H., Haviluddin, H., Anthony, P. (eds.) Computational Science and Technology. LNEE, vol. 724, pp. 193–205. Springer, Singapore (2021). https://doi.org/10.1007/978-981-33-4069-5_17

    Chapter  Google Scholar 

  6. Cheng, J., Wang, Z., Pollastri, G.: A neural network approach to ordinal regression. In: 2008 IEEE International Joint Conference on Neural Networks (IEEE World Congress on Computational Intelligence), pp. 1279–1284. IEEE (2008)

    Google Scholar 

  7. Chiu, S.C., Chen, M.S.: A study on difficulty level recognition of piano sheet music. In: 2012 IEEE International Symposium on Multimedia, pp. 17–23. IEEE (2012)

    Google Scholar 

  8. Diaz, R., Marathe, A.: Soft labels for ordinal regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4738–4747 (2019)

    Google Scholar 

  9. Donahue, C., Lipton, Z.C., McAuley, J.: Dance dance convolution. In: International Conference on Machine Learning, pp. 1039–1048. PMLR (2017)

    Google Scholar 

  10. Fu, H., Gong, M., Wang, C., Batmanghelich, K., Tao, D.: Deep ordinal regression network for monocular depth estimation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2002–2011 (2018)

    Google Scholar 

  11. Ghatas, Y., Fayek, M., Hadhoud, M.: A hybrid deep learning approach for musical difficulty estimation of piano symbolic music. Alex. Eng. J. 61(12), 10183–10196 (2022)

    Article  Google Scholar 

  12. Gutiérrez, P.A., Perez-Ortiz, M., Sanchez-Monedero, J., Fernandez-Navarro, F., Hervas-Martinez, C.: Ordinal regression methods: survey and experimental study. IEEE Trans. Knowl. Data Eng. 28(1), 127–146 (2015)

    Article  Google Scholar 

  13. Halina, E., Guzdial, M.: Taikonation: Patterning-focused chart generation for rhythm action games. In: The 16th International Conference on the Foundations of Digital Games (FDG) 2021, pp. 1–10 (2021)

    Google Scholar 

  14. Hooshyar, D., Yousefi, M., Lim, H.: Data-driven approaches to game player modeling: a systematic literature review. ACM Comput. Surv. (CSUR) 50(6), 1–19 (2018)

    Article  Google Scholar 

  15. Jian, H., van den Brink, H.M., Groot, W.: College Education and Social trust, Ph.D. thesis, Maastricht University (1727)

    Google Scholar 

  16. Lin, H.T., Li, L.: Reduction from cost-sensitive ordinal ranking to weighted binary classification. Neural Comput. 24(5), 1329–1367 (2012)

    Article  MATH  Google Scholar 

  17. Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: International Conference on Learning Representations (2019)

    Google Scholar 

  18. Missura, O., Gärtner, T.: Player modeling for intelligent difficulty adjustment. In: Gama, J., Costa, V.S., Jorge, A.M., Brazdil, P.B. (eds.) DS 2009. LNCS (LNAI), vol. 5808, pp. 197–211. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-04747-3_17

    Chapter  Google Scholar 

  19. Niu, Z., Zhou, M., Wang, L., Gao, X., Hua, G.: Ordinal regression with multiple output CNN for age estimation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4920–4928 (2016)

    Google Scholar 

  20. Roohi, S., Relas, A., Takatalo, J., Heiskanen, H., Hämäläinen, P.: Predicting game difficulty and churn without players. In: Proceedings of the Annual Symposium on Computer-Human Interaction in Play, pp. 585–593 (2020)

    Google Scholar 

  21. Saad, S.E., Yang, J.: Twitter sentiment analysis based on ordinal regression. IEEE Access 7, 163677–163685 (2019)

    Article  Google Scholar 

  22. Sébastien, V., Ralambondrainy, H., Sébastien, O., Conruyt, N.: Score analyzer: automatically determining scores difficulty level for instrumental e-learning. In: 13th International Society for Music Information Retrieval Conference (ISMIR 2012), pp. 571–576 (2012)

    Google Scholar 

  23. Tsujino, Y., Yamanishi, R.: Dance dance gradation: a generation of fine-tuned dance charts. In: Clua, E., Roque, L., Lugmayr, A., Tuomi, P. (eds.) ICEC 2018. LNCS, vol. 11112, pp. 175–187. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-99426-0_15

    Chapter  Google Scholar 

  24. Tsujino, Y., Yamanishi, R., Yamashita, Y.: Characteristics study of dance-charts on rhythm-based video games. In: 2019 IEEE Conference on Games (CoG), pp. 1–4. IEEE (2019)

    Google Scholar 

  25. Tutz, G.: Ordinal regression: a review and a taxonomy of models. Wiley Interdisc. Rev. Comput. Stat. 14(2), e1545 (2022)

    Article  MathSciNet  Google Scholar 

  26. Vaswani, A., et al.: Attention is all you need. In: Advances in Neural Information Processing Systems, vol. 30 (2017)

    Google Scholar 

  27. Yannakakis, G.N., Spronck, P., Loiacono, D., André, E.: Player Modeling. In: Lucas, S.M., Mateas, M., Preuss, M., Spronck, P., Togelius, J. (eds.) Artificial and Computational Intelligence in Games, Dagstuhl Follow-Ups, vol. 6, pp. 45–59. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany (2013). https://doi.org/10.4230/DFU.Vol6.12191.45

Download references

Acknowledgements

The authors acknowledge support by the Carl-Zeiss Foundation, the DFG awards KL 2698/2-1, KL 2698/5-1, BU 4042/2-1 and BU 4042/1-1, and the BMBF awards 01|S20048, 01|S18051A, 03|B0770E, and 01|S21010C.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Billy Joe Franks .

Editor information

Editors and Affiliations

Ethics declarations

Ethical Implications

This work focuses on applications in the entertainment industry. Specifically, the focus is improving the entertainment achieved when playing StepMania, a video game involving physical and mental exertion. The prediction of difficulty is closely related to reducing the churn in games, that is, the rate at which players stop playing a game for various reasons. While not the focus of this work, this does mean there is a chance that this work can be used to make rhythm-based video games more addictive.

Beyond the user experiment performed in Table 4, this work does not involve the use of personal data. For Table 4, we merely collected for pairs of songs played by a particular player which of the two was more difficult. This data is entirely anonymous, and for each rated pair, it is no longer possible to determine which player was the participant rating the pair.

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Franks, B.J., Dinkelmann, B., Kloft, M., Fellenz, S. (2023). Ordinal Regression for Difficulty Prediction of StepMania Levels. In: De Francisci Morales, G., Perlich, C., Ruchansky, N., Kourtellis, N., Baralis, E., Bonchi, F. (eds) Machine Learning and Knowledge Discovery in Databases: Applied Data Science and Demo Track. ECML PKDD 2023. Lecture Notes in Computer Science(), vol 14174. Springer, Cham. https://doi.org/10.1007/978-3-031-43427-3_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-43427-3_30

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-43426-6

  • Online ISBN: 978-3-031-43427-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics