Skip to main content

PDF-VQA: A New Dataset for Real-World VQA on PDF Documents

  • Conference paper
  • First Online:
Machine Learning and Knowledge Discovery in Databases: Applied Data Science and Demo Track (ECML PKDD 2023)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 14174))

  • 1650 Accesses

Abstract

Document-based Visual Question Answering examines the document understanding of document images in conditions of natural language questions. We proposed a new document-based VQA dataset, PDF-VQA, to comprehensively examine the document understanding from various aspects, including document element recognition, document layout structural understanding as well as contextual understanding and key information extraction. Our PDF-VQA dataset extends the current scale of document understanding that limits on the single document page to the new scale that asks questions over the full document of multiple pages. We also propose a new graph-based VQA model that explicitly integrates the spatial and hierarchically structural relationships between different document elements to boost the document structural understanding. The performances are compared with several baselines over different question types and tasks (The full dataset is released in https://github.com/adlnlp/pdfvqa).

Y. Ding and S. Luo—Co-First Authors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://www.ncbi.nlm.nih.gov/pmc/tools/openftlist/.

  2. 2.

    It follows the XML schema module provided by the Journal Archiving and Interchange Tag Suite created by the National Library of Medicine (NLM) https://dtd.nlm.nih.gov/.

  3. 3.

    More details and human evaluation survey examples can be found in Appendix B https://github.com/adlnlp/pdfvqa/blob/main/Appendix.pdf.

  4. 4.

    The detailed baseline model setup can be found in Appendix D https://github.com/adlnlp/pdfvqa/blob/main/Appendix.pdf.

References

  1. Antol, S., et al.: Vqa: visual question answering. In: Proceedings of the IEEE international Conference on Computer Vision, pp. 2425–2433 (2015)

    Google Scholar 

  2. Biten, A.F., et al.: Scene text visual question answering. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4291–4301 (2019)

    Google Scholar 

  3. Chaudhry, R., Shekhar, S., Gupta, U., Maneriker, P., Bansal, P., Joshi, A.: Leaf-qa: locate, encode & attend for figure question answering. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, pp. 3512–3521 (2020)

    Google Scholar 

  4. Davis, B., Morse, B., Price, B., Tensmeyer, C., Wiginton, C.: Visual FUDGE: form understanding via dynamic graph editing. In: Lladós, J., Lopresti, D., Uchida, S. (eds.) ICDAR 2021. LNCS, vol. 12821, pp. 416–431. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-86549-8_27

    Chapter  Google Scholar 

  5. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: Bert: pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, vol. 1 (Long and Short Papers), pp. 4171–4186 (2019)

    Google Scholar 

  6. Ding, Y., et al.: V-doc: visual questions answers with documents. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 21492–21498 (2022)

    Google Scholar 

  7. Ding, Y., et al.: Form-nlu: Dataset for the form language understanding. arXiv preprint arXiv:2304.01577 (2023)

  8. Goyal, Y., Khot, T., Summers-Stay, D., Batra, D., Parikh, D.: Making the v in vqa matter: Elevating the role of image understanding in visual question answering. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6904–6913 (2017)

    Google Scholar 

  9. Hu, R., Singh, A., Darrell, T., Rohrbach, M.: Iterative answer prediction with pointer-augmented multimodal transformers for textvqa. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9992–10002 (2020)

    Google Scholar 

  10. Huang, Z., et al.: Icdar 2019 competition on scanned receipt ocr and information extraction. In: 2019 International Conference on Document Analysis and Recognition (ICDAR), pp. 1516–1520. IEEE (2019)

    Google Scholar 

  11. Hudson, D.A., Manning, C.D.: Gqa: a new dataset for real-world visual reasoning and compositional question answering. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6700–6709 (2019)

    Google Scholar 

  12. Johnson, J., Hariharan, B., Van Der Maaten, L., Fei-Fei, L., Lawrence Zitnick, C., Girshick, R.: Clevr: a diagnostic dataset for compositional language and elementary visual reasoning. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2901–2910 (2017)

    Google Scholar 

  13. Kafle, K., Price, B., Cohen, S., Kanan, C.: Dvqa: Understanding data visualizations via question answering. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5648–5656 (2018)

    Google Scholar 

  14. Kahou, S.E., Michalski, V., Atkinson, A., Kádár, Á., Trischler, A., Bengio, Y.: Figureqa: an annotated figure dataset for visual reasoning. arXiv preprint arXiv:1710.07300 (2017)

  15. Kembhavi, A., Seo, M., Schwenk, D., Choi, J., Farhadi, A., Hajishirzi, H.: Are you smarter than a sixth grader? textbook question answering for multimodal machine comprehension. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4999–5007 (2017)

    Google Scholar 

  16. Kim, W., Son, B., Kim, I.: Vilt: vision-and-language transformer without convolution or region supervision. In: International Conference on Machine Learning, pp. 5583–5594. PMLR (2021)

    Google Scholar 

  17. Li, L.H., Yatskar, M., Yin, D., Hsieh, C.J., Chang, K.W.: Visualbert: a simple and performant baseline for vision and language. arXiv preprint arXiv:1908.03557 (2019)

  18. Luo, S., Ding, Y., Long, S., Poon, J., Han, S.C.: Doc-gcn: heterogeneous graph convolutional networks for document layout analysis. In: Proceedings of the 29th International Conference on Computational Linguistics, pp. 2906–2916 (2022)

    Google Scholar 

  19. Luo, S., Han, S.C., Sun, K., Poon, J.: REXUP: I reason, I extract, I update with structured compositional reasoning for visual question answering. In: Yang, H., Pasupa, K., Leung, A.C.-S., Kwok, J.T., Chan, J.H., King, I. (eds.) ICONIP 2020. LNCS, vol. 12532, pp. 520–532. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-63830-6_44

    Chapter  Google Scholar 

  20. Mathew, M., Bagal, V., Tito, R., Karatzas, D., Valveny, E., Jawahar, C.: Infographicvqa. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, pp. 1697–1706 (2022)

    Google Scholar 

  21. Mathew, M., Karatzas, D., Jawahar, C.: Docvqa: a dataset for vqa on document images. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, pp. 2200–2209 (2021)

    Google Scholar 

  22. Methani, N., Ganguly, P., Khapra, M.M., Kumar, P.: Plotqa: reasoning over scientific plots. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, pp. 1527–1536 (2020)

    Google Scholar 

  23. Mishra, A., Shekhar, S., Singh, A.K., Chakraborty, A.: Ocr-vqa: Visual question answering by reading text in images. In: 2019 International Conference on Document Analysis and Recognition (ICDAR), pp. 947–952. IEEE (2019)

    Google Scholar 

  24. Park, S., et al.: Cord: a consolidated receipt dataset for post-ocr parsing. In: Workshop on Document Intelligence at NeurIPS 2019 (2019)

    Google Scholar 

  25. Rausch, J., Martinez, O., Bissig, F., Zhang, C., Feuerriegel, S.: Docparser: hierarchical document structure parsing from renderings. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 35, pp. 4328–4338 (2021)

    Google Scholar 

  26. Shen, Z., Zhang, R., Dell, M., Lee, B.C.G., Carlson, J., Li, W.: LayoutParser: a unified toolkit for deep learning based document image analysis. In: Lladós, J., Lopresti, D., Uchida, S. (eds.) ICDAR 2021. LNCS, vol. 12821, pp. 131–146. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-86549-8_9

    Chapter  Google Scholar 

  27. Singh, A., et al.: Towards vqa models that can read. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8317–8326 (2019)

    Google Scholar 

  28. Tan, H., Bansal, M.: Lxmert: learning cross-modality encoder representations from transformers. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 5100–5111 (2019)

    Google Scholar 

  29. Tanaka, R., Nishida, K., Yoshida, S.: Visualmrc: machine reading comprehension on document images. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 35, pp. 13878–13888 (2021)

    Google Scholar 

  30. Wang, X., et al.: On the general value of evidence, and bilingual scene-text visual question answering. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10126–10135 (2020)

    Google Scholar 

  31. Xu, Y., et al.: Layoutlmv2: Multi-modal pre-training for visually-rich document understanding. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing, vol. 1: Long Papers, pp. 2579–2591 (2021)

    Google Scholar 

  32. Xu, Y., Li, M., Cui, L., Huang, S., Wei, F., Zhou, M.: Layoutlm: pre-training of text and layout for document image understanding. In: Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 1192–1200 (2020)

    Google Scholar 

  33. Zhang, P., et al.: VSR: a unified framework for document layout analysis combining vision, semantics and relations. In: Lladós, J., Lopresti, D., Uchida, S. (eds.) ICDAR 2021. LNCS, vol. 12821, pp. 115–130. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-86549-8_8

    Chapter  Google Scholar 

  34. Zhang, Z., Ma, J., Du, J., Wang, L., Zhang, J.: Multimodal pre-training based on graph attention network for document understanding. arXiv preprint arXiv:2203.13530 (2022)

  35. Zhong, X., Tang, J., Yepes, A.J.: Publaynet: largest dataset ever for document layout analysis. In: 2019 International Conference on Document Analysis and Recognition (ICDAR), pp. 1015–1022. IEEE (2019)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soyeon Caren Han .

Editor information

Editors and Affiliations

Ethics declarations

Ethical Consideration

This study was reviewed and approved by the ethics review committee of the authors’ institution and conducted in accordance with the principles of the Declaration. Written informed consent was obtained from each participant.

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ding, Y., Luo, S., Chung, H., Han, S.C. (2023). PDF-VQA: A New Dataset for Real-World VQA on PDF Documents. In: De Francisci Morales, G., Perlich, C., Ruchansky, N., Kourtellis, N., Baralis, E., Bonchi, F. (eds) Machine Learning and Knowledge Discovery in Databases: Applied Data Science and Demo Track. ECML PKDD 2023. Lecture Notes in Computer Science(), vol 14174. Springer, Cham. https://doi.org/10.1007/978-3-031-43427-3_35

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-43427-3_35

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-43426-6

  • Online ISBN: 978-3-031-43427-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics