Abstract
Demand for accountability is increasing, driven by the growth of open data and e-governments. Accountability requires specific and fairly accurate information about people’s responsibilities and actions. Studies on data quality or FAIRness do not have a specific focus on that aspect. Therefore, we describe our approach to evaluate the accountability of several knowledge graphs of the LOD cloud and the results obtained.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Amdouni, E., Bouazzouni, S., Jonquet, C.: O’FAIRe: Ontology FAIRness evaluator in the agroportal semantic resource repository. In: Groth, P., et al. (eds.) ESWC 2022–19th Extended Semantic Web Conference, Poster and Demonstration. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-11609-4_17
Färber, M., Bartscherer, F., Menne, C., Rettinger, A.: Linked data quality of DBpedia, Freebase, OpenCYC, Wikidata, and YAGO. Semant. Web 9(1), 77–129 (2018)
Maillot, P., Corby, O., Faron, C., Gandon, F., Michel, F.: IndeGx: a model and a framework for indexing RDF knowledge graphs with SPARQL-based test suits. J. Web Semant. 76, 100775 (2023)
Oppold, S., Herschel, M.: Accountable data analytics start with accountable data: the liquid metadata model. In: ER Forum/Posters/Demos, pp. 59–72 (2020)
Rosnet, T., de Lamotte, F., Devignes, M.D., Lefort, V., Gaignard, A.: FAIR-checker - supporting the findability and reusability of digital life science resources (2021)
Weitzner, D.J., Abelson, H., Berners-Lee, T., Feigenbaum, J., Hendler, J., Sussman, G.J.: Information accountability. Commun. ACM 51(6), 82–87 (2008)
Zaveri, A., Rula, A., Maurino, A., Pietrobon, R., Lehmann, J., Auer, S.: Quality assessment for linked data: a survey. Semant. Web 7(1), 63–93 (2016)
Acknowledgments
This work is supported by the ANR DeKaloG (Decentralized Knowledge Graphs) project, ANR-19-CE23-0014, CE23 - Intelligence artificielle.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Andersen, J., Cazalens, S., Lamarre, P. (2023). Assessing Knowledge Graphs Accountability. In: Pesquita, C., et al. The Semantic Web: ESWC 2023 Satellite Events. ESWC 2023. Lecture Notes in Computer Science, vol 13998. Springer, Cham. https://doi.org/10.1007/978-3-031-43458-7_7
Download citation
DOI: https://doi.org/10.1007/978-3-031-43458-7_7
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-43457-0
Online ISBN: 978-3-031-43458-7
eBook Packages: Computer ScienceComputer Science (R0)