Skip to main content

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 770))

Included in the following conference series:

  • 281 Accesses

Abstract

This paper presents two feature extraction methods for training different classification models for the detection of pleasure and displeasure defined by high and low valence levels using functional near-infrared spectroscopy (fNIRS). The study involved fifty-four volunteers who were presented with emotion-inducing image blocks while their prefrontal cortex brain activity was recorded by an fNIRS device. Results from the participants’ responses to a questionnaire showed no significant differences in valence-related scores. The study used statistical and ROCKET methods to extract features and trained six models to discriminate high and low valence. The results showed that ROCKET features performed best with kNN, MLP and SVM classifiers. The research highlighted the potential of different feature extraction methods to improve the accuracy of biosignal analysis from fNIRS devices.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Altman, N.S.: An introduction to kernel and nearest-neighbor nonparametric regression. Am. Stat. 46(3), 175–185 (1992)

    MathSciNet  Google Scholar 

  2. Chen, T., Guestrin, C.: XGBoost: a scalable tree boosting system. In: 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 785–794. ACM (2016)

    Google Scholar 

  3. Cortes, C., Vapnik, V.: Support-vector networks. Mach. Learn. 20(3), 273–297 (1995)

    Article  MATH  Google Scholar 

  4. Dempster, A., Petitjean, F., Webb, G.I.: Rocket: exceptionally fast and accurate time series classification using random convolutional kernels. arXiv:1910.13051 (2019)

  5. Ekman, P.: Universal and cultural differences in facial expression of emotions, pp. 207–283. University of Nebraska Press (1972)

    Google Scholar 

  6. Fishburn, F.A., Ludlum, R.S., Vaidya, C.J., Medvedev, A.V.: Temporal derivative distribution repair (TDDR): a motion correction method for fNIRS. Neuroimage 184, 171–179 (2019)

    Article  Google Scholar 

  7. García-Pérez, E., Sánchez-Reolid, D., Sánchez-Reolid, R., Fernández-Caballero, A., Latorre, J.M., Borja, A.L.: Electroencephalographic signal processing from brain-computer-interface following image-based emotion induction. In: Julián, V., Carneiro, J., Alonso, R.S., Chamoso, P., Novais, P. (eds.) ISAmI 2022. LNCS, pp. 239–248. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-22356-3_23

    Chapter  Google Scholar 

  8. Ho, T.K.: Random decision forests. In: 3rd International Conference on Document Analysis and Recognition, vol. 1, pp. 278–282. IEEE (1995)

    Google Scholar 

  9. Lang, P.J., Bradley, M.M., Cuthbert, B.N.: International affective picture system (IAPS): affective ratings of pictures and instruction manual. Technical report. A-8, University of Florida (2008)

    Google Scholar 

  10. Lang, P.J.: Behavioral Treatment and Bio-behavioral Assessment: Computer Applications. Ablex Publishing (1980)

    Google Scholar 

  11. Martínez-Rodrigo, A., García-Martínez, B., Alcaraz, R., González, P., Fernández-Caballero, A.: Multiscale entropy analysis for recognition of visually elicited negative stress from EEG recordings. Int. J. Neural Syst. 29(2), 1850038 (2019)

    Article  Google Scholar 

  12. Pedregosa, F., et al.: Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011)

    MathSciNet  MATH  Google Scholar 

  13. Peirce, J., et al.: PsychoPy2: experiments in behavior made easy. Behav. Res. Methods 51(1), 195–203 (2019)

    Article  Google Scholar 

  14. Pollonini, L., Olds, C., Abaya, L., Bortfeld, H., Beauchamp, M.S., Oghalai, J.S.: Phoebe: a method for real time mapping of optodes-scalp coupling in functional near-infrared spectroscopy. Biomed. Opt. Express 7(12), 5104–5119 (2016)

    Article  Google Scholar 

  15. Rish, I.: An empirical study of the Naive Bayes classifier. In: IJCAI 2001 Workshop on Empirical Methods in Artificial Intelligence, vol. 3, pp. 41–46 (2001)

    Google Scholar 

  16. Rumelhart, D.E., Hinton, G.E., Williams, R.J.: Learning representations by back-propagating errors. Nature 323(6088), 533–536 (1986)

    Article  MATH  Google Scholar 

  17. Russell, J.: A circumplex model of affect. J. Pers. Soc. Psychol. 39(6), 1161–1178 (1980)

    Article  Google Scholar 

  18. Sánchez-Reolid, R., et al.: Emotion classification from EEG with a low-cost BCI versus a high-end equipment. Int. J. Neural Syst. 32(10), 2250041 (2022)

    Article  Google Scholar 

  19. Sánchez-Reolid, R., López de la Rosa, F., Sánchez-Reolid, D., López, M.T., Fernández-Caballero, A.: Machine learning techniques for arousal classification from electrodermal activity: a systematic review. Sensors 22(22) (2022)

    Google Scholar 

Download references

Acknowledgements

Grants PID2020-115220RB-C21 and EQC2019-006063-P funded by MCIN/AEI/ 10.13039/501100011033 and by “ERDF A way to make Europe”. Grant 2022-GRIN-34436 funded by Universidad de Castilla-La Mancha and by “ERDF A way of making Europe”. Grant PTA2019-016876-I funded by MCIN/AEI/ 10.13039/501100011033 and by “ESF Investing in your future”. This research was also supported by CIBERSAM, Instituto de Salud Carlos III, Ministerio de Ciencia e Innovación.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Sánchez-Reolid .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sánchez-Reolid, D., Sánchez-Reolid, R., Fernández-Caballero, A., Borja, A.L. (2023). Pleasure and Displeasure Identification from fNIRS Signals. In: Novais, P., et al. Ambient Intelligence – Software and Applications – 14th International Symposium on Ambient Intelligence. ISAmI 2023. Lecture Notes in Networks and Systems, vol 770. Springer, Cham. https://doi.org/10.1007/978-3-031-43461-7_21

Download citation

Publish with us

Policies and ethics