Skip to main content

Distance-Based Covering Problems for Graphs of Given Cyclomatic Number

  • Conference paper
  • First Online:
Fundamentals of Computation Theory (FCT 2023)

Abstract

We study a large family of graph covering problems, whose definitions rely on distances, for graphs of bounded cyclomatic number (that is, the minimum number of edges that need to be removed from the graph to destroy all cycles). These problems include (but are not restricted to) three families of problems: (i) variants of metric dimension, where one wants to choose a small set S of vertices of the graph such that every vertex is uniquely determined by its ordered vector of distances to the vertices of S; (ii) variants of geodetic sets, where one wants to select a small set S of vertices such that any vertex lies on some shortest path between two vertices of S; (iii) variants of path covers, where one wants to select a small set of paths such that every vertex or edge belongs to one of the paths. We generalize and/or improve previous results in the area which show that the optimal values for these problems can be upper-bounded by a linear function of the cyclomatic number and the degree 1-vertices of the graph. To this end, we develop and enhance a technique recently introduced in [C. Lu, Q. Ye, C. Zhu. Algorithmic aspect on the minimum (weighted) doubly resolving set problem of graphs, Journal of Combinatorial Optimization 44:2029–2039, 2022] and give near-optimal bounds in several cases. This solves (in some cases fully, in some cases partially) some conjectures and open questions from the literature. The method, based on breadth-first search, is of algorithmic nature and thus, all the constructions can be computed in linear time. Our results also imply an algorithmic consequence for the computation of the optimal solutions: they can all be computed in polynomial time for graphs of bounded cyclomatic number.

Research funded by the French government IDEX-ISITE initiative 16-IDEX-0001 (CAP 20–25) and by the ANR project GRALMECO (ANR-21-CE48-0004).

A. Hakanen—Research supported by the Jenny and Antti Wihuri Foundation and partially by Academy of Finland grant number 338797.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Andreatta, G., Mason, F.: Path covering problems and testing of printed circuits. Disc. Appl. Math. 62(1), 5–13 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  2. Arokiaraj, A., Klavžar, S., Manuel, P.D., Thomas, E., Xavier, A.: Strong geodetic problems in networks. Discussiones Mathematicae Graph Theory 40(1), 307–321 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  3. Atici, M.: On the edge geodetic number of a graph. Int. J. Comput. Math. 80(7), 853–861 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  4. Cáceres, M., Cairo, M., Mumey, B., Rizzi, R., Tomescu, A.I.: Sparsifying, shrinking and splicing for minimum path cover in parameterized linear time. In: Proceedings of SODA 2022, pp. 359–376. SIAM (2022)

    Google Scholar 

  5. Chakraborty, D., Dailly, A., Das, S., Foucaud, F., Gahlawat, H., Ghosh, S.K.: Complexity and algorithms for isometric path cover on chordal graphs and beyond. In: Proceedings of ISAAC 2022, LIPIcs, vol. 248, pp. 12:1–12:17 (2022)

    Google Scholar 

  6. Chartrand, G., Eroh, L., Johnson, M.A., Oellermann, O.: Resolvability in graphs and the metric dimension of a graph. Disc. Appl. Math. 105(1–3), 99–113 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  7. Coppersmith, D., Vishkin, U.: Solving NP-hard problems in ‘almost trees’: vertex cover. Disc. Appl. Math. 10(1), 27–45 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  8. Courcelle, B.: The monadic second-order logic of graphs. i. recognizable sets of finite graphs. Inf. Comput. 85(1), 12–75 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  9. Eppstein, D.: Metric dimension parameterized by max leaf number. J. Graph Algor. Appl. 19(1), 313–323 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  10. Epstein, L., Levin, A., Woeginger, G.J.: The (weighted) metric dimension of graphs: Hard and easy cases. Algorithmica 72(4), 1130–1171 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  11. Fisher, D.C., Fitzpatrick, S.L.: The isometric number of a graph. J. Comb. Math. Comb. Comput. 38(1), 97–110 (2001)

    MathSciNet  MATH  Google Scholar 

  12. Foucaud, F., Kao, S., Klasing, R., Miller, M., Ryan, J.: Monitoring the edges of a graph using distances. Disc. Appl. Math. 319, 424–438 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  13. Foucaud, F., Klasing, R., Miller, M., Ryan, J.: Monitoring the edges of a graph using distances. In: Changat, M., Das, S. (eds.) CALDAM 2020. LNCS, vol. 12016, pp. 28–40. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-39219-2_3

    Chapter  Google Scholar 

  14. Foucaud, F., Narayanan, K., Sulochana, L.R.: Monitoring edge-geodetic sets in graphs. In: Bagchi, A., Muthu, R. (eds.) Proceedings of CALDAM 2023. Lecture Notes in Computer Science, vol. 13947, pp. 245–256. Springer, Heidelberg (2023). https://doi.org/10.1007/978-3-031-25211-2_19

  15. Harary, F., Loukakis, E., Tsouros, C.: The geodetic number of a graph. Math. Comput. Model. 17(11), 89–95 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  16. Harary, F., Melter, R.: On the metric dimension of a graph. Ars Combinatoria 2, 191–195 (1976)

    MathSciNet  MATH  Google Scholar 

  17. Kelenc, A., Kuziak, D., Taranenko, A., Yero, I.G.: Mixed metric dimension of graphs. Appl. Math. Comput. 314, 429–438 (2017)

    MathSciNet  MATH  Google Scholar 

  18. Kelenc, A., Tratnik, N., Yero, I.G.: Uniquely identifying the edges of a graph: the edge metric dimension. Disc. Appl. Math. 251, 204–220 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  19. Kellerhals, L., Koana, T.: Parameterized complexity of geodetic set. J. Graph Algor. Appl. 26(4), 401–419 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  20. Khuller, S., Raghavachari, B., Rosenfeld, A.: Landmarks in graphs. Disc. Appl. Math. 70(3), 217–229 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  21. Knor, M., Majstorović, S., Masa Toshi, A.T., Škrekovski, R., Yero, I.G.: Graphs with the edge metric dimension smaller than the metric dimension. Appl. Math. Comput. 401, 126076 (2021)

    MathSciNet  MATH  Google Scholar 

  22. Kuziak, D., Yero, I.G.: Metric dimension related parameters in graphs: a survey on combinatorial, computational and applied results. arXiv preprint arXiv:2107.04877 (2021)

  23. Lu, C., Ye, Q., Zhu, C.: Algorithmic aspect on the minimum (weighted) doubly resolving set problem of graphs. J. Comb. Optim. 44, 2029–2039 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  24. Manuel, P., Klavžar, S., Xavier, A., Arokiaraj, A., Thomas, E.: Strong edge geodetic problem in networks. Open Math. 15(1), 1225–1235 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  25. Manuel, P.D.: Revisiting path-type covering and partitioning problems. arXiv preprint arXiv:1807.10613 (2018)

  26. Ntafos, S., Hakimi, S.: On path cover problems in digraphs and applications to program testing. IEEE Trans. Softw. Eng. SE 5(5), 520–529 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  27. Pelayo, I.M.: Geodesic Convexity in Graphs. Springer, Heidelberg (2013). https://doi.org/10.1007/978-1-4614-8699-2

    Book  MATH  Google Scholar 

  28. Sedlar, J., Škrekovski, R.: Bounds on metric dimensions of graphs with edge disjoint cycles. Appl. Math. Comput. 396, 125908 (2021)

    MathSciNet  MATH  Google Scholar 

  29. Sedlar, J., Škrekovski, R.: Extremal mixed metric dimension with respect to the cyclomatic number. Appl. Math. Comput. 404, 126238 (2021)

    MathSciNet  MATH  Google Scholar 

  30. Sedlar, J., Škrekovski, R.: Mixed metric dimension of graphs with edge disjoint cycles. Disc. Appl. Math. 300, 1–8 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  31. Sedlar, J., Škrekovski, R.: Metric dimensions vs. cyclomatic number of graphs with minimum degree at least two. Appl. Math. Comput. 427, 127147 (2022)

    MathSciNet  MATH  Google Scholar 

  32. Sedlar, J., Škrekovski, R.: Vertex and edge metric dimensions of cacti. Disc. Appl. Math. 320, 126–139 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  33. Slater, P.J.: Leaves of trees. In: Proceedings of the Sixth Southeastern Conference on Combinatorics, Graph Theory, and Computing (Florida Atlantic Univ., Boca Raton, Fla., 1975), pp. 549–559. Congressus Numerantium, No. XIV. Utilitas Math., Winnipeg, Man. (1975)

    Google Scholar 

  34. Tillquist, R.C., Frongillo, R.M., Lladser, M.E.: Getting the lay of the land in discrete space: a survey of metric dimension and its applications. arXiv preprint arXiv:2104.07201 (2021)

  35. Uhlmann, J., Weller, M.: Two-layer planarization parameterized by feedback edge set. Theor. Comput. Sci. 494, 99–111 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  36. Zubrilina, N.: On the edge dimension of a graph. Disc. Math. 341(7), 2083–2088 (2018)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anni Hakanen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chakraborty, D., Foucaud, F., Hakanen, A. (2023). Distance-Based Covering Problems for Graphs of Given Cyclomatic Number. In: Fernau, H., Jansen, K. (eds) Fundamentals of Computation Theory. FCT 2023. Lecture Notes in Computer Science, vol 14292. Springer, Cham. https://doi.org/10.1007/978-3-031-43587-4_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-43587-4_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-43586-7

  • Online ISBN: 978-3-031-43587-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics