Skip to main content

Bounds for c-Ideal Hashing

  • Conference paper
  • First Online:
Fundamentals of Computation Theory (FCT 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14292))

Included in the following conference series:

  • 163 Accesses

Abstract

In this paper, we analyze hashing from a worst-case perspective. To this end, we study a new property of hash families that is strongly related to d-perfect hashing, namely c-ideality. On the one hand, this notion generalizes the definition of perfect hashing, which has been studied extensively; on the other hand, it provides a direct link to the notion of c-approximativity. We focus on the usually neglected case where the average load \(\alpha \) is at least 1 and prove upper and lower parametrized bounds on the minimal size of c-ideal hash families.

As an aside, we show how c-ideality helps to analyze the advice complexity of hashing. The concept of advice, introduced a decade ago, lets us measure the information content of an online problem. We prove hashing’s advice complexity to be linear in the hash table size.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Note that the number of hash functions, \(|\mathcal {H}_\text {all}|=m^u\), is huge.

  2. 2.

    This number can be expressed as \(\sum _{k=1}^m\left( {\begin{array}{c}\alpha _k\\ 2\end{array}}\right) \in \varTheta \left( \alpha _1^2+\ldots +\alpha _m^2\right) \subseteq \mathcal {O}\left( m\cdot \alpha _\text {max}^2\right) \).

  3. 3.

    Note that, for any \(h_\textrm{eq}\), there are exactly (\(u\!\!\mod m\)) cells of size \(\lceil {u/m} \rceil \) since \(\sum _{k=1}^m |h_\textrm{eq}^{-1}(k)| = u\).

References

  1. Barbour, A.D., Holst, L., Janson, S.: Poisson Approximation. Clarendon Press, Oxford (1992)

    Book  MATH  Google Scholar 

  2. Blackburn, S.R.: Perfect hash families: probabilistic methods and explicit constructions. J. Comb. Theory Ser. A 92(1), 54–60 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  3. Carter, L., Wegman, M.N.: Universal classes of hash functions. J. Comput. Syst. Sci. 18(2), 143–154 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  4. Chi, L., Zhu, X.: Hashing techniques: a survey and taxonomy. 50(1) (2017)

    Google Scholar 

  5. Dietzfelbinger, M., Mehlhorn, K., Sanders, P.: Algorithmen und Datenstrukturen. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-05472-3

    Book  MATH  Google Scholar 

  6. Dietzfelbinger, M., Mitzenmacher, M., Pagh, R., Woodruff, D.P., Aumüller, M.: Theory and applications of hashing (dagstuhl seminar 17181). Dagstuhl Rep. 7(5), 1–21 (2017)

    Google Scholar 

  7. Dubhashi, D.P., Ranjan, D.: Balls and bins: a study in negative dependence. Random Struct. Algorithms 13(2), 99–124 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  8. Fredman, M.L., Komlós, J.: On the size of separating systems and families of perfect hash functions. SIAM J. Alg. Disc. Meth. 5, 61–68 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  9. Gonnet, G.H.: Expected length of the longest probe sequence in hash code searching. J. ACM 28(2), 289–304 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  10. Guruswami, V., Riazanov, A.: Beating Fredman-Komlós for perfect k-hashing. J. Comb. Theory, Ser. A 188, 105580 (2022)

    Google Scholar 

  11. Hansel, G.: Nombre minimal de contacts de fermeture nécessaires pour réaliser une fonction booléenne symétrique de n variables. Comptes Rendus Hebdomadaires des Séances de l’Académie des Sciences, 258 (1964)

    Google Scholar 

  12. Karp, R.M., Rabin, M.O.: Efficient randomized pattern-matching algorithms. IBM J. Res. Dev. 31(2), 249–260 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  13. Komm, D.: An Introduction to Online Computation - Determinism, Randomization, Advice. Texts in Theoretical Computer Science. An EATCS Series. Springer (2016). https://doi.org/10.1007/978-3-319-42749-2

  14. Körner, J.: Fredman-komlós bounds and information theory. SIAM J. Algebraic Discrete Methods 7(4), 560–570 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  15. Luby, M., Wigderson, A.: Pairwise independence and derandomization. Foundations and Trends in Theoretical Computer Science 1(4) (2005)

    Google Scholar 

  16. Mehlhorn, K.: Data Structures and Algorithms 1: Sorting and Searching, volume 1 of EATCS Monographs on Theoretical Computer Science. Springer (1984). https://doi.org/10.1007/978-3-642-69672-5

  17. Mehlhorn, K., Sanders, P.: Algorithms and Data Structures: The Basic Toolbox. Springer (2008). https://doi.org/10.1007/978-3-540-77978-0

  18. Mitzenmacher, M., Upfal, E.: Probability and Computing. Cambridge University Press, Cambridge (2017)

    MATH  Google Scholar 

  19. Morris, R.H.: Scatter Storage Techniques. 11(1) (1968)

    Google Scholar 

  20. Morris, R.H.: Scatter storage techniques (reprint). Commun. ACM 26(1), 39–42 (1983)

    Article  Google Scholar 

  21. Naor, M., Schulman, L.J., Srinivasan, A.: Splitters and near-optimal derandomization. In: 36th Annual Symposium on Foundations of Computer Science, Milwaukee, Wisconsin, USA, 23–25 October 1995, pp. 182–191 (1995)

    Google Scholar 

  22. Raab, M., Steger, A.: Balls into bins - a simple and tight analysis. In: Randomization and Approximation Techniques in Computer Science, Second International Workshop, RANDOM’98, Barcelona, Spain, October 8–10, 1998, Proceedings, pp. 159–170 (1998)

    Google Scholar 

  23. Robbins, H.E.: A remark on Stirling’s formula. Am. Math. Mon. 62, 26–29 (1955)

    MathSciNet  MATH  Google Scholar 

  24. Schmidt, Jeanette P., Siegel, Alan: The spatial complexity of oblivious k-probe hash functions. SIAM J. Comput. 19(5), 775–786 (1990)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabian Frei .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Frei, F., Wehner, D. (2023). Bounds for c-Ideal Hashing. In: Fernau, H., Jansen, K. (eds) Fundamentals of Computation Theory. FCT 2023. Lecture Notes in Computer Science, vol 14292. Springer, Cham. https://doi.org/10.1007/978-3-031-43587-4_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-43587-4_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-43586-7

  • Online ISBN: 978-3-031-43587-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics