Skip to main content

Verified Exact Real Computation with Nondeterministic Functions and Limits

  • Conference paper
  • First Online:
Fundamentals of Computation Theory (FCT 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14292))

Included in the following conference series:

  • 160 Accesses

Abstract

The problems of computing limit points nondeterministically from sequences of nondeterministic real numbers appear ubiquitously in exact real computation along with root-finding of real and complex functions. To provide a rigorous foundation of verified computations with nondeterministic limits, we introduce a simple imperative language for exact real computation with a nondeterministic limit operator as its primitive. The operator’s formal semantics is defined. To make nontrivial sequences of nondeterministic real numbers be defined within the language, we further extend the language with lambda expressions for constructing higher-order nondeterministic functions without side effects and countable nondeterministic choices. We devise proof rules for the new operations and prove their soundness. As an example, to demonstrate the strength of the proof rules, we verify the correctness of a program, a computational counterpart of a constructive Intermediate Value Theorem, computing nondeterministically a root of a continuous locally non-constant real function whose signs at each endpoint of the unit interval differ.

The author is a JSPS International Research Fellow supported by JSPS KAKENHI (Grant-in-Aid for JSPS Fellows) JP22F22071.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    It is also often called multivaluedness or non-extensionality; see [6].

  2. 2.

    Often, a different notation \(f :\subseteq X \rightrightarrows Y\) is used for a partial nondeterministic function and \(f : X \rightrightarrows Y\) denotes a total nondeterministic function. However, we do not make a syntactic distinction between total and partial nondeterministic functions, and assume that all nondeterministic functions are possibly partial. Hence, in this paper, we use \(X \rightrightarrows Y\) for the set of partial nondeterministic functions. For example, \((X \rightrightarrows Y) \rightrightarrows Z\) denotes the set of partial nondeterministic functions to Z from partial nondeterministic functions from X to Y.

  3. 3.

    In exact real computation, it is also called Kleenean; see [6].

References

  1. Apt, K.R., Olderog, E.R.: Fifty years of Hoare’s logic. Formal Aspects Comput. 31, 751–807 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  2. Apt, K.R., Plotkin, G.D.: Countable nondeterminism and random assignment. J. ACM (JACM) 33(4), 724–767 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  3. Balluchi, A., Casagrande, A., Collins, P., Ferrari, A., Villa, T., Sangiovanni-Vincentelli, A.: Ariadne: a framework for reachability analysis of hybrid automata. In: Proceedings of 17th International Symposium on Mathematical Theory of Networks and Systems, Kyoto (2006)

    Google Scholar 

  4. Bishop, E.A.: Foundations of constructive analysis (1967)

    Google Scholar 

  5. Brattka, V., Hertling, P.: Feasible real random access machines. J. Complex. 14(4), 490–526 (1998). https://doi.org/10.1006/jcom.1998.0488

    Article  MathSciNet  MATH  Google Scholar 

  6. Brauße, F., Collins, P., Ziegler, M.: Computer science for continuous data. In: Boulier, F., England, M., Sadykov, T.M., Vorozhtsov, E.V. (eds.) Computer Algebra in Scientific Computing, pp. 62–82. Springer, Cham (2022)

    Chapter  MATH  Google Scholar 

  7. Bridges, D.S.: A general constructive intermediate value theorem. Math. Log. Q. 35(5), 433–435 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bridges, D.S.: Constructive mathematics: a foundation for computable analysis. Theoret. Comput. Sci. 219(1), 95–109 (1999). https://doi.org/10.1016/S0304-3975(98)00285-0

    Article  MathSciNet  MATH  Google Scholar 

  9. Di Gianantonio, P., Honsell, F., Plotkin, G.: Uncountable limits and the lambda calculus. Nordic J. Comput. (1995)

    Google Scholar 

  10. Geuvers, H., Niqui, M., Spitters, B., Wiedijk, F.: Constructive analysis, types and exact real numbers. Math. Struct. Comput. Sci. 17(1), 3–36 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  11. Honda, K., Yoshida, N.: A compositional logic for polymorphic higher-order functions. In: Proceedings of the 6th ACM SIGPLAN International Conference on Principles and Practice of Declarative Programming, pp. 191–202 (2004)

    Google Scholar 

  12. Honda, K., Yoshida, N., Berger, M.: An observationally complete program logic for imperative higher-order functions. In: 20th Annual IEEE Symposium on Logic in Computer Science (LICS 2005), pp. 270–279. IEEE (2005)

    Google Scholar 

  13. Konečný, M., Park, S., Thies, H.: Certified computation of nondeterministic limits. In: Deshmukh, J.V., Havelund, K., Perez, I. (eds.) NASA Formal Methods, pp. 771–789. Springer, Cham (2022)

    Chapter  Google Scholar 

  14. Konečný, M., Park, S., Thies, H.: Axiomatic reals and certified efficient exact real computation. In: Silva, A., Wassermann, R., de Queiroz, R. (eds.) WoLLIC 2021. LNCS, vol. 13038, pp. 252–268. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-88853-4_16

    Chapter  MATH  Google Scholar 

  15. Konečný, M.: aern2-real: a Haskell library for exact real number computation. https://hackage.haskell.org/package/aern2-real (2021)

  16. Luckhardt, H.: A fundamental effect in computations on real numbers. Theoret. Comput. Sci. 5(3), 321–324 (1977). https://doi.org/10.1016/0304-3975(77)90048-2

    Article  MathSciNet  MATH  Google Scholar 

  17. Müller, N.T.: Implementing limits in an interactive realram. In: 3rd Conference on Real Numbers and Computers, 1998, Paris, vol. 13, p. 26 (1998)

    Google Scholar 

  18. Müller, N.T.: The iRRAM: exact arithmetic in C++. In: Blanck, J., Brattka, V., Hertling, P. (eds.) CCA 2000. LNCS, vol. 2064, pp. 222–252. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45335-0_14

    Chapter  Google Scholar 

  19. Neumann, E., Pauly, A.: A topological view on algebraic computation models. J. Complex. 44, 1–22 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  20. Park, S., et al.: Foundation of computer (algebra) ANALYSIS systems: Semantics, logic, programming, verification. arXiv preprint arXiv:1608.05787 (2016)

  21. Selivanova, S., Steinberg, F., Thies, H., Ziegler, M.: Exact real computation of solution operators for linear analytic systems of partial differential equations. In: Boulier, F., England, M., Sadykov, T.M., Vorozhtsov, E.V. (eds.) CASC 2021. LNCS, vol. 12865, pp. 370–390. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-85165-1_21

    Chapter  Google Scholar 

  22. Tucker, J.V., Zucker, J.I.: Abstract versus concrete computation on metric partial algebras. ACM Trans. Comput. Logic (TOCL) 5(4), 611–668 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  23. Weihrauch, K.: Computable Analysis. Springer, Berlin (2000)

    Book  MATH  Google Scholar 

Download references

Acknowledgements

The author would like to thank Holger Thies and the anonymous reviewers for constructive comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sewon Park .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Park, S. (2023). Verified Exact Real Computation with Nondeterministic Functions and Limits. In: Fernau, H., Jansen, K. (eds) Fundamentals of Computation Theory. FCT 2023. Lecture Notes in Computer Science, vol 14292. Springer, Cham. https://doi.org/10.1007/978-3-031-43587-4_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-43587-4_26

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-43586-7

  • Online ISBN: 978-3-031-43587-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics