Skip to main content

Using Large Language Models for the Enforcement of Consumer Rights in Germany

  • Conference paper
  • First Online:
Digital Transformation (PLAIS EuroSymposium 2023)

Abstract

In European competition law, consumer protection agencies and competition authorities play a crucial role in ensuring fair competition. When a violation is identified by these institutions, they typically obtain a cease-and-desist declaration to ensure compliance with applicable laws. However, the manual verification of compliance is a time-consuming task, which poses a risk of companies continuing to engage in unlawful practices to the detriment of consumers. We propose a technology-enhanced solution to address this issue. Artificial Intelligence emerges as a transformative solution and Large Language Models now provide the potential for automation, replacing the need for manual completion of such tedious compliance checks. In our project KIVEDU, we aim to design an AI-based system that automates the enforcement of consumer rights. In this article, we present an overview of the current state of research, the planned project, the challenges we expect to encounter, and our initial results as well as planned next steps. With this work, our goal is to contribute to the enforcement of European consumer protection law, foster fair competition, and strengthen consumer rights.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    The project website can be accessed under https://kivedu-projekt.de.

References

  1. Aleph Alpha: Luminous (2023). https://www.aleph-alpha.com/luminous

  2. Anthropic: Introducing Claude (Mar 2023). https://www.anthropic.com/index/introducing-claude

  3. Biderman, S., et al.: Pythia: A Suite for Analyzing Large Language Models Across Training and Scaling (May 2023). https://doi.org/10.48550/arXiv.2304.01373

  4. BigScience Workshop: BLOOM: A 176B-Parameter Open-Access Multilingual Language Model (Jun 2023). https://doi.org/10.48550/arXiv.2211.05100

  5. Braun, D., Matthes, F.: NLP for Consumer protection: battling illegal clauses in german terms and conditions in online shopping. In: Proceedings of the 1st Workshop on NLP for Positive Impact. Association for Computational Linguistics, Online (Aug 2021). https://doi.org/10.18653/v1/2021.nlp4posimpact-1.10

  6. Braun, D., Scepankova, E., Holl, P., Matthes, F.: Consumer protection in the digital era: the potential of customer-centered LegalTech. In: David, K., Geihs, K., Lange, M., Stumme, G. (eds.) INFORMATIK 2019: 50 Jahre Gesellschaft für Informatik - Informatik für Gesellschaft, pp. 407–420. Gesellschaft für Informatik e.V., Bonn (2019). https://doi.org/10.18420/inf2019_58

  7. Chakrabarti, D., et al.: Use of artificial intelligence to analyse risk in legal documents for a better decision support. In: TENCON 2018–2018 IEEE Region 10 Conference, pp. 683–688. IEEE, Jeju, Korea (South) (Oct 2018). https://doi.org/10.1109/TENCON.2018.8650382

  8. Christiano, P., Leike, J., Brown, T.B., Martic, M., Legg, S., Amodei, D.: Deep reinforcement learning from human preferences (Feb 2023). https://doi.org/10.48550/arXiv.1706.03741

  9. Contissa, G., et al.: Claudette meets GDPR: automating the evaluation of privacy policies using. Artif. Intell. (2018). https://doi.org/10.2139/ssrn.3208596

    Article  Google Scholar 

  10. Databricks: Free Dolly: Introducing the World’s First Truly Open Instruction-Tuned LLM (Apr 2023). https://www.databricks.com/blog/2023/04/12/dolly-first-open-commercially-viable-instruction-tuned-llm

  11. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding (May 2019). https://doi.org/10.48550/arXiv.1810.04805

  12. European Commission: 2016/0148 (COD) Cooperation between national authorities responsible for the enforcement of consumer protection laws (May 2016). https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex:52016PC0283

  13. Juranek, S., Otneim, H.: Using machine learning to predict patent lawsuits (2021). https://doi.org/10.2139/ssrn.3871701

  14. Kasneci, E., et al.: ChatGPT for good? on opportunities and challenges of large language models for education. Learn. Individ. Differ. 103, 102274 (2023). https://doi.org/10.1016/j.lindif.2023.102274

    Article  Google Scholar 

  15. Kroschwald, S.: Nutzer-, kontext- und situationsbedingte Vulnerabilität in digitalen Gesellschaften: Schutz, Selbstbestimmung und Teilhabe by Design vor dem Hintergrund des Art. 25 DSGVO und dem KI-Verordnungsentwurf. Zeitschrift für Digitalisierung und Recht (1), 1–22 (2023)

    Google Scholar 

  16. Köpf, A., et al.: OpenAssistant Conversations - Democratizing Large Language Model Alignment (Apr 2023). https://doi.org/10.48550/arXiv.2304.07327

  17. Lippi, M., et al.: Automated detection of unfair clauses in online consumer contracts. In: Legal Knowledge and Information Systems, pp. 145–154. IOS Press (2017). https://doi.org/10.3233/978-1-61499-838-9-145

  18. Lippi, M., et al.: CLAUDETTE: an automated detector of potentially unfair clauses in online terms of service. Artificial Intell. Law 27(2), 117–139 (2019). https://doi.org/10.1007/s10506-019-09243-2

    Article  Google Scholar 

  19. Liu, Q., Wu, H., Ye, Y., Zhao, H., Liu, C., Du, D.: Patent litigation prediction: a convolutional tensor factorization approach. In: International Joint Conference on Artificial Intelligence (2018). https://doi.org/10.24963/ijcai.2018/701

  20. MosaicML NLP Team: Introducing MPT-7B: A New Standard for Open-Source, Commercially Usable LLMs (2023). www.mosaicml.com/blog/mpt-7b

  21. OpenAI: Introducing ChatGPT (Nov 2022). https://openai.com/blog/chatgpt

  22. OpenAI: GPT-4 Technical Report (Mar 2023). https://doi.org/10.48550/arXiv.2303.08774

  23. Penedo, G., et al.: The RefinedWeb Dataset for Falcon LLM: Outperforming Curated Corpora with Web Data, and Web Data Only (Jun 2023)

    Google Scholar 

  24. Rösch, D., Schuster, T., Waidelich, L., Alpers, S.: Privacy control patterns for compliant application of GDPR. In: AMCIS 2019 Proceedings (Jul 2019). https://aisel.aisnet.org/amcis2019/info_security_privacy/info_security_privacy/27

  25. Stability AI: Stability AI Launches the First of its StableLM Suite of Language Models (Apr 2023). https://stability.ai/blog/stability-ai-launches-the-first-of-its-stablelm-suite-of-language-models

  26. Stability AI: Stability AI releases StableVicuna, the AI World’s First Open Source RLHF LLM Chatbot (Apr 2023). https://stability.ai/blog/stablevicuna-open-source-rlhf-chatbot

  27. Taori, R., et al.: Stanford Alpaca: An Instruction-following LLaMA model (2023). https://github.com/tatsu-lab/stanford_alpaca

  28. Touvron, H., et al.: LLaMA: Open and Efficient Foundation Language Models (Feb 2023). https://doi.org/10.48550/arXiv.2302.13971

  29. Trappey, C.V., Trappey, A.J.C., Liu, B.H.: Identify trademark legal case precedents - Using machine learning to enable semantic analysis of judgments. World Patent Information 62 (Sep 2020). https://doi.org/10.1016/j.wpi.2020.101980

  30. Vásquez, S., Kroschwald, S.: Data-driven vehicles: Privacy by Design - Verantwortung zwischen Herstellern und Anbietern und das Principal-Agent-Problem. Zeitschrift für IT-Recht und Recht der Digitalisierung 4, 217–221 (2020)

    Google Scholar 

  31. Zhou, C., et al.: LIMA: Less Is More for Alignment (May 2023). https://doi.org/10.48550/arXiv.2305.11206

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lukas Waidelich .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Waidelich, L., Lambert, M., Al-Washash, Z., Kroschwald, S., Schuster, T., Döring, N. (2023). Using Large Language Models for the Enforcement of Consumer Rights in Germany. In: Maślankowski, J., Marcinkowski, B., Rupino da Cunha, P. (eds) Digital Transformation. PLAIS EuroSymposium 2023. Lecture Notes in Business Information Processing, vol 495. Springer, Cham. https://doi.org/10.1007/978-3-031-43590-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-43590-4_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-43589-8

  • Online ISBN: 978-3-031-43590-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics