Abstract
This study addresses the problem of allocating shore side electricity (SSE) supply points. We consider a group of terminals, for which the overall environmental benefit is to be maximized. To this end, an optimization model is developed that yields the optimal SSE supply point allocation plan. The proposed model solves the berth allocation problem with port call data. The novelty of this model lies in the distinction of terminals, respecting the individual target terminal per vessel. This supports the application on a group of terminals, even spanning multiple ports. Previous models only support such a use case by requiring further analysis on the results of per-terminal applications. We examine the results for various generated scenarios based on historical port call data of one month for a container terminal group in the Port of Hamburg, Germany. The results show that the best found allocation plan in this study, enabling 2.54 GWh of SSE consumption, is slightly better than the allocation plan published by the Port of Hamburg.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
CAA. Evaluation of Air and Climate Synergies of Typical Chinese Ports. Clean Air Asia (2022). http://allaboutair.cn/uploads/soft/230308/1-23030Q34007.pdf. Accessed 15 Apr 2023
Cammin, P., Voß, S.: Towards smart maritime port emissions monitoring: a platform for enhanced transparency. In: Chandra Kruse, L., Seidel, S., Hausvik, G.I. (eds.) DESRIST 2021. LNCS, vol. 12807, pp. 71–76. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-82405-1_9
Dai, L., Hao, H., Wang, Z., Shi, Y., Ding, W.: An environmental and techno-economic analysis of shore side electricity. Transp. Res. Part D: Transp. Environ. 75, 223–235 (2019). https://doi.org/10.1016/j.trd.2019.09.002
Drucker, P.: The Practice of Management. Harper, New York (1954)
EP: Sustainable maritime fuels ‘Fit for 55’ package: the FuelEU Maritime proposal (2023). https://www.europarl.europa.eu/RegData/etudes/BRIE/2021/698808/EPRS_BRI(2021) 698808_EN.pdf
Gore, K., Rigot-Müller, P., Coughlan, J.: Cost-benefit assessment of shore side electricity: an Irish perspective. J. Environ. Manage. 326, 116755 (2023). https://doi.org/10.1016/j.jenvman.2022.116755
Herrero, A., Piris, A.O., Diaz-Ruiz-Navamuel, E., Gutierrez, M.A., Lopez-Diaz, A.-I.: Influence of the implantation of the onshore power supply (OPS) system in Spanish medium-sized ports on the reduction in CO\(_2\) emissions: the case of the Port of Santander (Spain). J. Marine Sci. Eng. 10(10), 1446 (2022). https://doi.org/10.3390/jmse10101446
HHLA. Report vessel operations: Sailing list. Hamburger Hafen und Logistik AG (2022). https://coast.hhla.de/report?id=Standard-Report-Segelliste. Accessed 10 Feb 2023
HPA. Plugging in to eliminate emissions. Hamburg Port Authority (2022). https://www.hafen-hamburg.de/en/port-of-hamburg-magazine/hafen-und-klima/stecker-rein-emissionen-aus/. Accessed 10 Feb 2023
HPM. Cleaner air and climate protection in Port of Hamburg - New shore-based power units for cruise liners and containerships. Hamburg Port Marketing (2019). https://www.hafen-hamburg.de/en/press/news/cleaner-air-and-climateprotection-in-port-of-hamburg-new-shore-based-power-units-for-cruiseliners-and-containerships-36499/. Accessed 10 Feb 2023
ICCT. Global scrubber washwater discharges under IMO’s 2020 fuel sulfur limit. International Council on Clean Transportation (2021). https://theicct.org/sites/default/files/publications/scrubber-discharges-Apr2021.pdf. Accessed 10 Mar 2023
Lathwal, P., Vaishnav, P., Morgan, M.G.: Environmental and health consequences of shore power for vessels calling at major ports in India. Environ. Res. Lett. 16(6), 064042 (2021). https://doi.org/10.1088/1748-9326/abfd5b
Martínez-López, A., Romero, A., Orosa, J.A.: Assessment of cold ironing and LNG as mitigation tools of short sea shipping emissions in port: a Spanish case study. Appl. Sci. 11(5), 2050 (2021). https://doi.org/10.3390/app11052050
Nguyen, D.-H., et al.: Reduction of NOx and SO2 emissions by shore power adoption. Aerosol Air Qual. Res. 21(7), 210100 (2021). https://doi.org/10.4209/aaqr.210100.
Peng, Y., Dong, M., Li, X., Liu, H., Wang, W.: Cooperative optimization of shore power allocation and berth allocation: a balance between cost and environmental benefit. J. Clean. Prod. 279, 123816 (2021). https://doi.org/10.1016/j.jclepro.2020.123816
Peng, Y., Li, X., Wang, W., Wei, Z., Bing, X., Song, X.: A method for determining the allocation strategy of on-shore power supply from a green container terminal perspective. Ocean Coast. Manag. 167, 158–175 (2019). https://doi.org/10.1016/j.ocecoaman.2018.10.007
POA. Memorandum of understanding onshore power ambitions for container terminals in port. Port of Antwerp, Port of Bremerhaven, Port of Hamburg, Haropa Port, Port of Rotterdam (2021). https://www.portofrotterdam.com/sites/default/files/2021-07/mou_ops_ports_of_antwerp-bremerhaven-hamburgharopa_port-rotterdam_-_final_20210618_003.pdf. Accessed 01 Mar 2023
POLA. Port of Los Angeles inventory of air emissions 2021. Port of Los Angeles (2022). https://kentico.portoflosangeles.org/getmedia/f26839cd-54cd-4da9-92b7-a34094ee75a8/2021_Air_Emissions_Inventory. Accessed 15 Feb 2023
POLA. Alternative maritime power (AMP). Port of Los Angeles (2023). https://www.portoflosangeles.org/environment/air-quality/alternative-maritimepower-(amp). Accessed 15 Apr 2023
Spengler, T., Tovar, B.: Potential of cold-ironing for the reduction of externalities from in-port shipping emissions: the state-owned Spanish port system case. J. Environ. Manage. 279, 111807 (2021). https://doi.org/10.1016/j.jenvman.2020.111807
Stolz, B., Held, M., Georges, G., Boulouchos, K.: The CO2 reduction potential of shore-side electricity in Europe. Appl. Energy 285, 116425 (2021). https://doi.org/10.1016/j.apenergy.2020.116425
UBA. Specific emission factors for electricity mix in Germany. Umweltbundesamt (2022). https://www.umweltbundesamt.de/themen/luft/emissionen-vonluftschadstoffen/spezifische-emissionsfaktoren-fuer-den-deutschen. Accessed 01 Mar 2023
Vaishnav, P., Fischbeck, P.S., Morgan, M.G., Corbett, J.J.: Shore power for vessels calling at U.S. ports: benefits and costs. Environ. Sci. Technol. 50(3), 1102–1110 (2016). https://doi.org/10.1021/acs.est.5b04860.
Wan, Z., Ji, S., Liu, Y., Zhang, Q., Chen, J., Wang, Q.: Shipping emission inventories in china’s Bohai bay, Yangtze river delta, and pearl river delta in 2018. Mar. Pollut. Bull. 151, 110882 (2020). https://doi.org/10.1016/j.marpolbul.2019.110882
Williamsson, J., Costa, N., Santén, V., Rogerson, S.: Barriers and drivers to the implementation of onshore power supply–a literature review. Sustainability 14(10), 6072 (2022). https://doi.org/10.3390/su14106072
Winkel, R., Weddige, U., Johnsen, D., Hoen, V., Papaefthimiou, S.: Shore side electricity in Europe: potential and environmental benefits. Energy Policy 88, 584–593 (2016). https://doi.org/10.1016/j.enpol.2015.07.013
Yu, J., Voß, S., Song, X.: Multi-objective optimization of daily use of shore side electricity integrated with quayside operation. J. Clean. Prod. 351, 131406 (2022). https://doi.org/10.1016/j.jclepro.2022.131406
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Yu, J., Cammin, P., Voß, S. (2023). Allocation of Shore Side Electricity: The Case of the Port of Hamburg. In: Daduna, J.R., Liedtke, G., Shi, X., Voß, S. (eds) Computational Logistics. ICCL 2023. Lecture Notes in Computer Science, vol 14239. Springer, Cham. https://doi.org/10.1007/978-3-031-43612-3_8
Download citation
DOI: https://doi.org/10.1007/978-3-031-43612-3_8
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-43611-6
Online ISBN: 978-3-031-43612-3
eBook Packages: Computer ScienceComputer Science (R0)