Abstract
Modern semiconductor manufacturing involves intricate production processes consisting of hundreds of operations, which can take several months from lot release to completion. The high-tech machines used in these processes are diverse, operate on individual wafers, lots, or batches in multiple stages, and necessitate product-specific setups and specialized maintenance procedures. This situation is different from traditional job-shop scheduling scenarios, which have less complex production processes and machines, and mainly focus on solving highly combinatorial but abstract scheduling problems. In this work, we address the scheduling of realistic semiconductor manufacturing processes by modeling their specific requirements using hybrid Answer Set Programming with difference logic, incorporating flexible machine processing, setup, batching and maintenance operations. Unlike existing methods that schedule semiconductor manufacturing processes locally with greedy heuristics or by independently optimizing specific machine group allocations, we examine the potentials of large-scale scheduling subject to multiple optimization objectives.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Abels, D., Jordi, J., Ostrowski, M., Schaub, T., Toletti, A., Wanko, P.: Train scheduling with hybrid ASP. Theory Pract. Logic Program. 21(3), 317–347 (2021). https://doi.org/10.1017/S1471068420000046
Abseher, M., Gebser, M., Musliu, N., Schaub, T., Woltran, S.: Shift design with answer set programming. Fund. Inform. 147(1), 1–25 (2016). https://doi.org/10.3233/FI-2016-1396
Ali, R., El-Kholany, M., Gebser, M.: Flexible job-shop scheduling for semiconductor manufacturing with hybrid answer set programming (application paper). In: Hanus, M., Inclezan, D. (eds.) PADL. LNCS, vol. 13880, pp. 85–95. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-24841-2_6
Ali, R., El-Kholany, M., Gebser, M.: Hybrid ASP-based multi-objective scheduling of semiconductor manufacturing processes (extended version) (2023). https://doi.org/10.48550/arXiv.2307.14799
Balduccini, M.: Industrial-size scheduling with ASP+CP. In: Delgrande, J.P., Faber, W. (eds.) LPNMR 2011. LNCS (LNAI), vol. 6645, pp. 284–296. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-20895-9_33
Banbara, M., et al.: teaspoon: Solving the curriculum-based course timetabling problems with answer set programming. Ann. Oper. Res. 275(1), 3–37 (2019). https://doi.org/10.1007/s10479-018-2757-7
Brucker, P., Schlie, R.: Job-shop scheduling with multi-purpose machines. Computing 45(4), 369–375 (1990). https://doi.org/10.1007/BF02238804
Ceylan, Z., Tozan, H., Bulkan, S.: A coordinated scheduling problem for the supply chain in a flexible job shop machine environment. Oper. Res. Int. Journal 21(2), 875–900 (2021). https://doi.org/10.1007/s12351-020-00615-0
Cotton, S., Maler, O.: Fast and flexible difference constraint propagation for DPLL(T). In: Biere, A., Gomes, C.P. (eds.) SAT 2006. LNCS, vol. 4121, pp. 170–183. Springer, Heidelberg (2006). https://doi.org/10.1007/11814948_19
Da Col, G., Teppan, E.C.: Industrial size job shop scheduling tackled by present day CP solvers. In: Schiex, T., de Givry, S. (eds.) CP 2019. LNCS, vol. 11802, pp. 144–160. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-30048-7_9
Dodaro, C., Galatà, G., Grioni, A., Maratea, M., Mochi, M., Porro, I.: An ASP-based solution to the chemotherapy treatment scheduling problem. Theory Pract. Logic Program. 21(6), 835–851 (2021). https://doi.org/10.1017/S1471068421000363
Eiter, T., Geibinger, T., Musliu, N., Oetsch, J., Skocovský, P., Stepanova, D.: Answer-set programming for lexicographical makespan optimisation in parallel machine scheduling. In: Proceedings of the Eighteenth International Conference on Principles of Knowledge Representation and Reasoning (KR 2021), pp. 280–290. AAAI Press (2021). https://doi.org/10.24963/kr.2021/27
El-Kholany, M., Gebser, M., Schekotihin, K.: Problem decomposition and multi-shot ASP solving for job-shop scheduling. Theory Pract. Logic Program. 22(4), 623–639 (2022). https://doi.org/10.1017/S1471068422000217
Francescutto, G., Schekotihin, K., El-Kholany, M.M.S.: Solving a multi-resource partial-ordering flexible variant of the job-shop scheduling problem with hybrid ASP. In: Faber, W., Friedrich, G., Gebser, M., Morak, M. (eds.) JELIA 2021. LNCS (LNAI), vol. 12678, pp. 313–328. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-75775-5_21
Garey, M., Johnson, D., Sethi, R.: The complexity of flowshop and jobshop scheduling. Math. Oper. Res. 1(2), 117–129 (1976). https://doi.org/10.1287/moor.1.2.117
Gebser, M., Kaminski, R., Kaufmann, B., Schaub, T.: Multi-shot ASP solving with clingo. Theory Pract. Logic Program. 19(1), 27–82 (2019). https://doi.org/10.1017/S1471068418000054
Gebser, M., Kaminski, R., Kaufmann, B., Ostrowski, M., Schaub, T., Wanko, P.: Theory solving made easy with clingo 5. In: Technical Communications of the Thirty-second International Conference on Logic Programming (ICLP 2016), pp. 2:1–2:15. Schloss Dagstuhl (2016). https://doi.org/10.4230/OASIcs.ICLP.2016.2
Gran, S., Ismail, I., Ajol, T., Ibrahim, A.: Mixed integer programming model for flexible job-shop scheduling problem (FJSP) to minimize makespan and total machining time. In: Proceedings of the International Conference on Computer, Communications, and Control Technology (I4CT), pp. 413–417. IEEE (2015). https://doi.org/10.1109/I4CT.2015.7219609
Ham, A., Park, M., Kim, K.: Energy-aware flexible job shop scheduling using mixed integer programming and constraint programming. Math. Probl. Eng. 2021(Article ID 8035806), 1–12 (2021). https://doi.org/10.1155/2021/8035806
Hassanzadeh, A., Rasti-Barzoki, M., Khosroshahi, H.: Two new meta-heuristics for a bi-objective supply chain scheduling problem in flow-shop environment. Appl. Soft Comput. 49, 335–351 (2016). https://doi.org/10.1016/j.asoc.2016.08.019
Janhunen, T., Kaminski, R., Ostrowski, M., Schellhorn, S., Wanko, P., Schaub, T.: Clingo goes linear constraints over reals and integers. Theory Pract. Logic Program. 17(5–6), 872–888 (2017). https://doi.org/10.1017/S1471068417000242
Kopp, D., Hassoun, M., Kalir, A., Mönch, L.: SMT2020-A semiconductor manufacturing testbed. IEEE Trans. Semicond. Manuf. 33(4), 522–531 (2020). https://doi.org/10.1109/TSM.2020.3001933
Kovács, B., Tassel, P., Ali, R., El-Kholany, M., Gebser, M., Seidel, G.: A customizable simulator for artificial intelligence research to schedule semiconductor fabs. In: Proceedings of the Thirty-third Annual SEMI Advanced Semiconductor Manufacturing Conference (ASMC 2022), pp. 106–111. IEEE (2022). https://doi.org/10.1109/ASMC54647.2022.9792520
Leslie, M.: Pandemic scrambles the semiconductor supply chain. Engineering 9, 10–12 (2022). https://doi.org/10.1016/j.eng.2021.12.006
Li, X., Gao, L.: An effective hybrid genetic algorithm and tabu search for flexible job shop scheduling problem. Int. J. Prod. Econ. 174, 93–110 (2016). https://doi.org/10.1016/j.ijpe.2016.01.016
Lifschitz, V.: Answer Set Programming. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-24658-7
Mönch, L., Fowler, J., Dauzère-Pérès, S., Mason, S., Rose, O.: A survey of problems, solution techniques, and future challenges in scheduling semiconductor manufacturing operations. J. Sched. 14(6), 583–599 (2011). https://doi.org/10.1007/s10951-010-0222-9
Pfund, M., Balasubramanian, H., Fowler, J., Mason, S., Rose, O.: A multi-criteria approach for scheduling semiconductor wafer fabrication facilities. J. Sched. 11(1), 29–47 (2008). https://doi.org/10.1007/s10951-007-0049-1
Pfund, M., Mason, S., Fowler, J.: Semiconductor manufacturing scheduling and dispatching. In: Herrmann, J.W. (ed.) Handbook of Production Scheduling. International Series in Operations Research and Management Science, vol. 89, pp. 213–241. Springer, Boston (2006). https://doi.org/10.1007/0-387-33117-4_9
Ricca, F., et al.: Team-building with answer set programming in the Gioia-Tauro seaport. Theory Pract. Logic Program. 12(3), 361–381 (2012). https://doi.org/10.1017/S147106841100007X
Sahraeian, R., Rohaninejad, M., Fadavi, M.: A new model for integrated lot sizing and scheduling in flexible job shop problem. J. Ind. Syst. Eng. 10(3), 72–91 (2017). https://www.jise.ir/article_44919.html
Taillard, E.: Benchmarks for basic scheduling problems. Eur. J. Oper. Res. 64(2), 278–285 (1993). https://doi.org/10.1016/0377-2217(93)90182-M
Tassel, P., Rbaia, M.: A multi-shot ASP encoding for the aircraft routing and maintenance planning problem. In: Faber, W., Friedrich, G., Gebser, M., Morak, M. (eds.) JELIA 2021. LNCS (LNAI), vol. 12678, pp. 442–457. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-75775-5_30
Upasani, A., Uzsoy, R., Sourirajan, K.: A problem reduction approach for scheduling semiconductor wafer fabrication facilities. IEEE Trans. Semicond. Manuf. 19(2), 216–225 (2006). https://doi.org/10.1109/TSM.2006.873510
Wang, L., Zheng, D.: An effective hybrid optimization strategy for job-shop scheduling problems. Comput. Oper. Res. 28(6), 585–596 (2001). https://doi.org/10.1016/S0305-0548(99)00137-9
Waschneck, B., et al.: Deep reinforcement learning for semiconductor production scheduling. In: Proceedings of the Twenty-ninth Annual SEMI Advanced Semiconductor Manufacturing Conference (ASMC 2018), pp. 301–306. IEEE (2018). https://doi.org/10.1109/ASMC.2018.8373191
Xing, L., Chen, Y., Wang, P., Zhao, Q., Xiong, J.: A knowledge-based ant colony optimization for flexible job shop scheduling problems. Appl. Soft Comput. 10(3), 888–896 (2010). https://doi.org/10.1016/j.asoc.2009.10.006
Acknowledgments
This work was funded by FFG project 894072 (SwarmIn) as well as KWF project 28472, cms electronics GmbH, FunderMax GmbH, Hirsch Armbänder GmbH, incubed IT GmbH, Infineon Technologies Austria AG, Isovolta AG, Kostwein Holding GmbH, and Privatstiftung Kärntner Sparkasse. We are grateful to the anonymous reviewers for their helpful comments.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
El-Kholany, M.M.S., Ali, R., Gebser, M. (2023). Hybrid ASP-Based Multi-objective Scheduling of Semiconductor Manufacturing Processes. In: Gaggl, S., Martinez, M.V., Ortiz, M. (eds) Logics in Artificial Intelligence. JELIA 2023. Lecture Notes in Computer Science(), vol 14281. Springer, Cham. https://doi.org/10.1007/978-3-031-43619-2_17
Download citation
DOI: https://doi.org/10.1007/978-3-031-43619-2_17
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-43618-5
Online ISBN: 978-3-031-43619-2
eBook Packages: Computer ScienceComputer Science (R0)