Abstract
We consider the description logic \(\mathcal {A}\mathcal {L}\mathcal {C}\mathcal {F}^{\mathcal {P}}(\mathcal {D}_{\varSigma })\) over the concrete domain \(\mathcal {D}_{\varSigma } = (\varSigma ^*,\prec ,=,(=_{\mathfrak {w}})_{\mathfrak {w}\in \varSigma ^*})\), where \(\prec \) is the strict prefix order over finite strings in \(\varSigma ^*\). Using an automata-based approach, we show that the concept satisfiability problem w.r.t. general TBoxes for \(\mathcal {A}\mathcal {L}\mathcal {C}\mathcal {F}^{\mathcal {P}}(\mathcal {D}_{\varSigma })\) is ExpTime-complete for all finite alphabets \(\varSigma \). As far as we know, this is the first complexity result for an expressive description logic with a nontrivial concrete domain on strings.
The second author is supported by the Deutsche Forschungsgemeinschaft (DFG), project 504343613.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Abdulla, P.A., et al.: String constraints for verification. In: Biere, A., Bloem, R. (eds.) CAV 2014. LNCS, vol. 8559, pp. 150–166. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-08867-9_10
Abdulla, P., et al.: Efficient handling of string-number conversion. In: PLDI 2020, pp. 943–957. ACM (2020)
Baader, F.: Description logics. In: Tessaris, S., et al. (eds.) Reasoning Web 2009. LNCS, vol. 5689, pp. 1–39. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-03754-2_1
Baader, F., Calvanese, D., Guinness, D.M., Nardi, D., Patel-Schneider, P. (eds.): The Description Logic Handbook: Theory, Implementation, and Applications. Cambridge University Press, Cambridge (2003)
Baader, F., Hanschke, P.: A scheme for integrating concrete domains into concept languages. In: IJCAI 1991, pp. 452–457 (1991)
Baader, F., Hladik, J., Lutz, C., Wolter, F.: From tableaux to automata for description logics. Fund. Inform. 57(2–4), 247–279 (2003)
Baader, F., Horrocks, I., Lutz, C., Sattler, U.: An Introduction to Description Logic. Cambridge University Press, Cambridge (2017)
Baader, F., Rydval, J.: An algebraic view on p-admissible concrete domains for lightweight description logics. In: Faber, W., Friedrich, G., Gebser, M., Morak, M. (eds.) JELIA 2021. LNCS (LNAI), vol. 12678, pp. 194–209. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-75775-5_14
Baader, F., Rydval, J.: Using model theory to find decidable and tractable description logics with concrete domains. JAR 66(3), 357–407 (2022)
Baader, F., Sattler, U.: Description logics with concrete domains and aggregation. In: ECAI 1998, pp. 336–340. Wiley (1998)
Balbiani, P., Jean-François, C.: Computational complexity of propositional linear temporal logics based on qualitative spatial or temporal reasoning. In: Armando, A. (ed.) FroCoS 2002. LNCS (LNAI), vol. 2309, pp. 162–176. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45988-X_13
Bednarczyk, B., Fiuk, O.: Presburger Büchi tree automata with applications to logics with expressive counting. In: Ciabattoni, A., Pimentel, E., de Queiroz, R.J.G.B. (eds.) WoLLIC 2022. LNCS, vol. 13468, pp. 295–308. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-15298-6_19
Carapelle, C., Feng, S., Kartzow, A., Lohrey, M.: Satisfiability of ECTL\(^*\) with local tree constraints. Theory Comput. Syst. 61(2), 689–720 (2017)
Carapelle, C., Kartzow, A., Lohrey, M.: Satisfiability of ECTL\(^*\) with constraints. J. Comput. Syst. Sci. 82(5), 826–855 (2016)
Carapelle, C., Turhan, A.: Description logics reasoning w.r.t. general TBoxes is decidable for concrete domains with the EHD-property. In: ECAI 2016, vol. 285, pp. 1440–1448. IOS Press (2016)
Čerāns, K.: Deciding properties of integral relational automata. In: Abiteboul, S., Shamir, E. (eds.) ICALP 1994. LNCS, vol. 820, pp. 35–46. Springer, Heidelberg (1994). https://doi.org/10.1007/3-540-58201-0_56
Demri, S., Deters, M.: Temporal logics on strings with prefix relation. JLC 26, 989–1017 (2016)
Demri, S., D’Souza, D.: An automata-theoretic approach to constraint LTL. I & C 205(3), 380–415 (2007)
Demri, S., Quaas, K.: Constraint automata on infinite data trees: from CTL(Z)/CTL*(Z) to decision procedures. CoRR, abs/2302.05327 (2023)
Diekert, V., Gutierrez, C., Hagenah, C.: The existential theory of equations with rational constraints in free groups is PSPACE-complete. I & C 202, 105–140 (2005)
Gascon, R.: An automata-based approach for CTL* with constraints. Electron. Notes Theor. Comput. Sci. 239, 193–211 (2009)
Geatti, L., Gianola, A., Gigante, N.: Linear temporal logic modulo theories over finite traces. In: IJCAI 2022, pp. 2641–2647. ijcai.org (2022)
Haarslev, V., Möller, R.: Description logic systems with concrete domains: applications for the semantic web. In: KRDB 2003. CEUR Workshop Proceedings, vol. 79. CEUR-WS.org (2003)
Hustadt, U., Motik, B., Sattler, U.: Reasoning in description logics with a concrete domain in the framework of resolution. In: ECAI 2004, pp. 353–357. IOS Press (2004)
Kartzow, A., Weidner, T.: Model checking constraint LTL over trees. CoRR, abs/1504.06105 (2015)
Labai, N.: Automata-based reasoning for decidable logics with data values. Ph.D. thesis, TU Wien (2021)
Labai, N., Ortiz, M., Simkus, M.: An Exptime Upper Bound for \(\cal{ALC} \) with integers. In: KR 2020, pp. 425–436. Morgan Kaufman (2020)
Liang, T., Reynolds, A., Tinelli, C., Barrett, C., Deters, M.: A DPLL(T) theory solver for a theory of strings and regular expressions. In: Biere, A., Bloem, R. (eds.) CAV 2014. LNCS, vol. 8559, pp. 646–662. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-08867-9_43
Lutz, C.: NExpTime-complete description logics with concrete domains. In: Goré, R., Leitsch, A., Nipkow, T. (eds.) IJCAR 2001. LNCS, vol. 2083, pp. 45–60. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45744-5_5
Lutz, C.: The complexity of description logics with concrete domains. Ph.D. thesis, RWTH, Aachen (2002)
Lutz, C.: Description logics with concrete domains–a survey. In: Advances in Modal Logics, vol. 4, pp. 265–296. King’s College Publications (2003)
Lutz, C.: NEXPTIME-complete description logics with concrete domains. ACM ToCL 5(4), 669–705 (2004)
Lutz, C., Milicić, M.: A tableau algorithm for description logics with concrete domains and general Tboxes. JAR 38(1–3), 227–259 (2007)
Makanin, G.: The problem of solvability of equations in a free semigroup (English translation). Math. USSR-Sbornik 32(2), 129–198 (1977)
Peteler, D., Quaas, K.: Deciding emptiness for constraint automata on strings with the prefix and suffix order. In: MFCS 2022. LIPIcs, vol. 241, pp. 76:1–76:15. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2022)
Plandowski, W.: Satisfiability of word equations with constants is in PSPACE. J. Assoc. Comput. Mach. 51(3), 483–496 (2004)
Quine, W.: Concatenation as a basis for arithmetic. J. Symb. Log. 11(4), 105–114 (1946)
Revesz, P.: Introduction to Constraint Databases. Springer, New York (2002). https://doi.org/10.1007/b97430
Rydval, J.: Using model theory to find decidable and tractable description logics with concrete domains. Ph.D. thesis, Dresden University (2022)
Segoufin, L., Toruńczyk, S.: Automata based verification over linearly ordered data domains. In: STACS 2011, pp. 81–92 (2011)
Seidl, H., Schwentick, T., Muscholl, A.: Counting in trees. In: Logic and Automata: History and Perspectives. Texts in Logic and Games, vol. 2, pp. 575–612. Amsterdam University Press (2008)
Vardi, M., Wolper, P.: Automata-theoretic techniques for modal logics of programs. J. Comput. Syst. Sci. 32, 183–221 (1986)
Weidner, T.: Probabilistic logic, probabilistic regular expressions, and constraint temporal logic. Ph.D. thesis, University of Leipzig (2016)
Wolper, P.: On the relation of programs and computations to models of temporal logic. In: Banieqbal, B., Barringer, H., Pnueli, A. (eds.) Temporal Logic in Specification. LNCS, vol. 398, pp. 75–123. Springer, Heidelberg (1989). https://doi.org/10.1007/3-540-51803-7_23
Author information
Authors and Affiliations
Corresponding authors
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Demri, S., Quaas, K. (2023). First Steps Towards Taming Description Logics with Strings. In: Gaggl, S., Martinez, M.V., Ortiz, M. (eds) Logics in Artificial Intelligence. JELIA 2023. Lecture Notes in Computer Science(), vol 14281. Springer, Cham. https://doi.org/10.1007/978-3-031-43619-2_23
Download citation
DOI: https://doi.org/10.1007/978-3-031-43619-2_23
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-43618-5
Online ISBN: 978-3-031-43619-2
eBook Packages: Computer ScienceComputer Science (R0)