Skip to main content

Tractable Closure-Based Possibilistic Repair for Partially Ordered DL-Lite Ontologies

  • Conference paper
  • First Online:
Logics in Artificial Intelligence (JELIA 2023)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 14281))

Included in the following conference series:

  • 617 Accesses

Abstract

Inconsistency in formal ontologies is usually addressed by computing repairs for the dataset. There are several strategies for selecting the repairs used to evaluate queries, with various levels of cautiousness and classes of computational complexity. This paper deals with inconsistent partially ordered lightweight ontologies. It introduces a new method that goes beyond the cautious strategies and that is tractable in the possibilistic setting, where uncertainty concerns only the data pieces. The proposed method, called C\(\pi \)-repair, proceeds as follows. It first interprets the partially ordered dataset as a family of totally ordered datasets. Then, it computes a single data repair for every totally ordered possibilistic ontology induced from the partially ordered possibilistic ontology. Next, it deductively closes each of these repairs in order to increase their productivity, without introducing conflicts or arbitrary data pieces. Finally, it intersects the closed repairs to obtain a single data repair for the initial ontology. The main contribution of this paper is an equivalent characterization that does not enumerate all the total orders, but also does not suffer from the additional computational cost naturally incurred by the deductive closure. We establish the tractability of our method by reformulating the problem using the notions of dominance and support. Intuitively, the valid conclusions are supported against conflicts by consistent inclusion-minimal subsets of the dataset that dominate all the conflicts. We also study the rationality properties of our method in terms of unconditional and conditional query-answering.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Given two inconsistency-tolerant semantics \(s_1\) and \(s_2\). Then \(s_1\) is more productive than \(s_2\) if any conclusion derived with \(s_2\) can also be derived with \(s_1\).

  2. 2.

    Note the difference between the ICR semantics which deductively closes the repairs of an ABox, and the ICAR semantics which computes the repairs for a closed ABox.

  3. 3.

    A binary relation \(\ge \) over \({\mathcal {A}}\) is a total preorder if it is reflexive and transitive, and for all \(\varphi _j \in {\mathcal {A}}\), for all \(\varphi _k \in {\mathcal {A}}\), either \(\varphi _j \ge \varphi _k\) or \(\varphi _k \ge \varphi _j\).

  4. 4.

    A binary relation \(\unrhd \) over \({\mathcal {A}}\) is a partial preorder if it is reflexive and transitive. Thus somes elements of \({\mathcal {A}}\) may be incomparable according to \(\unrhd \).

  5. 5.

    Consider \(\varphi _j\) and \(\varphi _k\) in \({\mathcal {A}}\). \(\varphi _j \bowtie \varphi _k\) means that neither \(\varphi _j \unrhd \varphi _k\) nor \(\varphi _k \unrhd \varphi _j\) holds.

  6. 6.

    In propositional logic (PL), RM is defined as: if \(\alpha \,{\mid \!\sim }_{{\mathcal {K}}}^{}\, \gamma \) and \(\alpha \,{\mid \!\not \sim }_{{\mathcal {K}}}^{}\, \lnot \beta \), then \(\alpha \wedge \beta \,{\mid \!\sim }_{{\mathcal {K}}}^{}\, \gamma \), where \(\alpha \), \(\beta \) and \(\gamma \) are PL formulas. Our adaptation consists first in rewriting RM equivalently in a disjunctive way: if \(\alpha \,{\mid \!\sim }_{{\mathcal {K}}}^{}\, \gamma \), then \(\alpha \wedge \beta \,{\mid \!\sim }_{{\mathcal {K}}}^{}\, \gamma \) or \(\alpha \,{\mid \!\sim }_{{\mathcal {K}}}^{}\, \lnot \beta \). Lastly, we replace \(\alpha \,{\mid \!\sim }_{{\mathcal {K}}}^{}\, \lnot \beta \) with \(\alpha \wedge \beta \) is inconsistent with the KB.

  7. 7.

    In PL, Comp is defined as: if \(\alpha \,{\mid \!\sim }_{{\mathcal {K}}}^{}\, \gamma \), then either \(\alpha \wedge \beta \,{\mid \!\sim }_{{\mathcal {K}}}^{}\, \gamma \) or \(\alpha \wedge \beta \,{\mid \!\sim }_{{\mathcal {K}}}^{}\, \lnot \gamma \). Here, we simply replace \(\alpha \wedge \beta \,{\mid \!\sim }_{{\mathcal {K}}}^{}\, \lnot \gamma \) with \(\alpha \wedge \beta \wedge \gamma \) is inconsistent with the KB.

References

  1. Artale, A., Calvanese, D., Kontchakov, R., Zakharyaschev, M.: The DL-Lite family and relations. J. Artif. Intell. Res. (JAIR) 36, 1–69 (2009). https://doi.org/10.1613/jair.2820

    Article  MathSciNet  MATH  Google Scholar 

  2. Baget, J., et al.: A general modifier-based framework for inconsistency-tolerant query answering. In: Principles of Knowledge Representation and Reasoning (KR), Cape Town, South Africa, pp. 513–516 (2016)

    Google Scholar 

  3. Baget, J.F., et al.: Inconsistency-tolerant query answering: rationality properties and computational complexity analysis. In: Michael, L., Kakas, A. (eds.) JELIA 2016. LNCS (LNAI), vol. 10021, pp. 64–80. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-48758-8_5

    Chapter  Google Scholar 

  4. Banerjee, M., Dubois, D., Godo, L., Prade, H.: On the relation between possibilistic logic and modal logics of belief and knowledge. J. Appl. Non-Classical Logics 27(3–4), 206–224 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  5. Belabbes, S., Benferhat, S.: Computing a possibility theory repair for partially preordered inconsistent ontologies. IEEE Trans. Fuzzy Syst. 30, 3237–3246 (2021)

    Article  Google Scholar 

  6. Belabbes, S., Benferhat, S., Chomicki, J.: Handling inconsistency in partially preordered ontologies: the Elect method. J. Log. Comput. 31(5), 1356–1388 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  7. Benferhat, S., Bouraoui, Z., Tabia, K.: How to select one preferred assertional-based repair from inconsistent and prioritized DL-Lite knowledge bases? In: International Joint Conference on Artificial Intelligence (IJCAI), Buenos Aires, Argentina, pp. 1450–1456 (2015)

    Google Scholar 

  8. Benferhat, S., Garcia, L.: Handling locally stratified inconsistent knowledge bases. Stud. Logica. 70(1), 77–104 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  9. Bienvenu, M.: On the complexity of consistent query answering in the presence of simple ontologies. In: Proceedings of the Twenty-Sixth AAAI Conference on Artificial Intelligence, Toronto, Ontario, Canada (2012)

    Google Scholar 

  10. Bienvenu, M., Bourgaux, C.: Inconsistency-tolerant querying of description logic knowledge bases. In: Pan, J.Z., et al. (eds.) Reasoning Web 2016. LNCS, vol. 9885, pp. 156–202. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-49493-7_5

    Chapter  MATH  Google Scholar 

  11. Bienvenu, M., Bourgaux, C.: Querying and repairing inconsistent prioritized knowledge bases: complexity analysis and links with abstract argumentation. In: Principles of Knowledge Representation and Reasoning (KR), Virtual Event, pp. 141–151 (2020)

    Google Scholar 

  12. Bienvenu, M., Bourgaux, C., Goasdoué, F.: Querying inconsistent description logic knowledge bases under preferred repair semantics. In: AAAI, pp. 996–1002 (2014)

    Google Scholar 

  13. Brewka, G.: Preferred subtheories: an extended logical framework for default reasoning. In: IJCAI, Detroit, USA, pp. 1043–1048 (1989)

    Google Scholar 

  14. Britz, K., Casini, G., Meyer, T., Moodley, K., Sattler, U., Varzinczak, I.: Principles of KLM-style defeasible description logics. ACM Trans. Comput. Log. 22(1), 1:1–1:46 (2021)

    Google Scholar 

  15. Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., Rosati, R.: Tractable reasoning and efficient query answering in description logics: the DL-Lite family. J. Autom. Reason. 39(3), 385–429 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  16. Calvanese, D., Kharlamov, E., Nutt, W., Zheleznyakov, D.: Evolution of DL-Lite knowledge bases. In: Patel-Schneider, P.F., et al. (eds.) ISWC 2010. LNCS, vol. 6496, pp. 112–128. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-17746-0_8

    Chapter  Google Scholar 

  17. Dempster, A.P.: Upper and lower probabilities induced by a multivalued mapping. Ann. Math. Stat. 38, 325–339 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  18. Dubois, D., Prade, H.: Possibilistic logic - an overview. Comput. Logic 9, 197–255 (2014)

    Google Scholar 

  19. Dubois, D., Prade, H.: A crash course on generalized possibilistic logic. In: Ciucci, D., Pasi, G., Vantaggi, B. (eds.) SUM 2018. LNCS (LNAI), vol. 11142, pp. 3–17. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00461-3_1

    Chapter  Google Scholar 

  20. Dubois, D., Prade, H., Schockaert, S.: Generalized possibilistic logic: foundations and applications to qualitative reasoning about uncertainty. Artif. Intell. J. 252, 139–174 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  21. Everett, L., Morris, E., Meyer, T.: Explanation for KLM-style defeasible reasoning. In: Jembere, E., Gerber, A.J., Viriri, S., Pillay, A. (eds.) SACAIR 2021. CCIS, vol. 1551, pp. 192–207. Springer, Cham (2022). https://doi.org/10.1007/978-3-030-95070-5_13

    Chapter  Google Scholar 

  22. Fagin, R., Halpern, J.Y., Moses, Y., Vardi, M.Y.: Reasoning About Knowledge. MIT Press, Cambridge (2003)

    MATH  Google Scholar 

  23. Finger, M., Godo, L., Prade, H., Qi, G.: Advances in weighted logics for artificial intelligence. Int. J. Approximate Reasoning 88, 385–386 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  24. Kraus, S., Lehmann, D., Magidor, M.: Nonmonotonic reasoning, preferential models and cumulative logics. Artif. Intell. J. 44(1–2), 167–207 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  25. Lembo, D., Lenzerini, M., Rosati, R., Ruzzi, M., Savo, D.F.: Inconsistency-tolerant semantics for description logics. In: Hitzler, P., Lukasiewicz, T. (eds.) RR 2010. LNCS, vol. 6333, pp. 103–117. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15918-3_9

    Chapter  Google Scholar 

  26. Nebel, B.: Base revision operations and schemes: semantics, representation and complexity. In: European Conference on Artificial Intelligence, pp. 341–345 (1994)

    Google Scholar 

  27. Poggi, A., Lembo, D., Calvanese, D., Giacomo, G.D., Lenzerini, M., Rosati, R.: Linking data to ontologies. J. Data Semant. 10, 133–173 (2008)

    MATH  Google Scholar 

  28. Shafer, G.: A Mathematical Theory of Evidence. Princeton University Press, Princeton (1976)

    Book  MATH  Google Scholar 

  29. Spohn, W.: The Laws of Belief - Ranking Theory and Its Philosophical Applications. Oxford University Press, Oxford (2014)

    Google Scholar 

  30. Zhou, L., Huang, H., Qi, G., Ma, Y., Huang, Z., Qu, Y.: Paraconsistent query answering over DL-Lite ontologies. Web Intell. Agent Syst. Int. J. 10(1), 19–31 (2012)

    Google Scholar 

Download references

Acknowledgements

This research has received support from the European Union’s Horizon research and innovation programme under the MSCA-SE (Marie Skłodowska-Curie Actions Staff Exchange) grant agreement 101086252; Call: HORIZON-MSCA-2021-SE-01; Project title: STARWARS (STormwAteR and WastewAteR networkS heterogeneous data AI-driven management).

This research has also received support from the French national project ANR (Agence Nationale de la Recherche) EXPIDA (EXplainable and parsimonious Preference models to get the most out of Inconsistent DAtabases), grant number ANR-22-CE23-0017 and from the ANR project Vivah (Vers une intelligence artificielle à visage humain), grant number ANR-20-THIA-0004.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmed Laouar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Laouar, A., Belabbes, S., Benferhat, S. (2023). Tractable Closure-Based Possibilistic Repair for Partially Ordered DL-Lite Ontologies. In: Gaggl, S., Martinez, M.V., Ortiz, M. (eds) Logics in Artificial Intelligence. JELIA 2023. Lecture Notes in Computer Science(), vol 14281. Springer, Cham. https://doi.org/10.1007/978-3-031-43619-2_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-43619-2_25

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-43618-5

  • Online ISBN: 978-3-031-43619-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics