Skip to main content

Splitting Techniques for Conditional Belief Bases in the Context of c-Representations

  • Conference paper
  • First Online:
Logics in Artificial Intelligence (JELIA 2023)

Abstract

Splitting belief bases is fundamental for efficient reasoning and for better understanding interrelationships among the knowledge entities. In this paper, we survey the most important splitting techniques for conditional belief bases in the context of c-representations which constitute a specific class of ranking models with outstanding behavior not only with respect to belief base splitting, as shown in recent papers. We provide a splitting hierarchy, in particular by proving that safe conditional syntax splittings and case splittings are so-called CSP-constraint splittings. We advance the level of knowledge about CSP-constraint splittings and present an algorithm for computing CSP-constraint splittings.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    The entries of the concatenated solution vectors have to be reordered such that they fit the ordering of the conditionals in \(\varDelta \).

References

  1. Beierle, C., Haldimann, J., Kern-Isberner, G.: Semantic splitting of conditional belief bases. In: Raschke, A., Riccobene, E., Schewe, K.-D. (eds.) Logic, Computation and Rigorous Methods. LNCS, vol. 12750, pp. 82–95. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-76020-5_5

    Chapter  MATH  Google Scholar 

  2. Beierle, C., Kern-Isberner, G.: Selection strategies for inductive reasoning from conditional belief bases and for belief change respecting the principle of conditional preservation. In: Bell, E., Keshtkar, F. (eds.) Proceedings of the Thirty-Fourth International Florida Artificial Intelligence Research Society Conference, North Miami Beach, Florida, USA, 17–19 May 2021 (2021)

    Google Scholar 

  3. Beierle, C., Kutsch, S., Sauerwald, K.: Compilation of conditional knowledge bases for computing C-inference relations. In: Ferrarotti, F., Woltran, S. (eds.) FoIKS 2018. LNCS, vol. 10833, pp. 34–54. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-90050-6_3

    Chapter  MATH  Google Scholar 

  4. Beierle, C., Kutsch, S., Sauerwald, K.: Compilation of static and evolving conditional knowledge bases for computing induced nonmonotonic inference relations. Ann. Math. Artif. Intell. 87(1–2), 5–41 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  5. Carnap, R.: Meaning and Necessity: A Study in Semantics and Modal Logic. University of Chicago Press, Chicago (1947)

    MATH  Google Scholar 

  6. Goldszmidt, M., Pearl, J.: Qualitative probabilities for default reasoning, belief revision, and causal modeling. Artif. Intell. 84, 57–112 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  7. Haldimann, J., Beierle, C.: Inference with system W satisfies syntax splitting. In: Kern-Isberner, G., Lakemeyer, G., Meyer, T. (eds.) Proceedings of the 19th International Conference on Principles of Knowledge Representation and Reasoning, KR 2022, Haifa, Israel, 31 July–5 August 2022 (2022)

    Google Scholar 

  8. Heyninck, J., Kern-Isberner, G., Meyer, T., Haldimann, J.P., Beierle, C.: Conditional syntax splitting for non-monotonic inference operators. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 37, pp. 6416–6424 (2023)

    Google Scholar 

  9. Heyninck, J., Kern-Isberner, G., Meyer, T.A.: Lexicographic entailment, syntax splitting and the drowning problem. In: Raedt, L.D. (ed.) Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI 2022, Vienna, Austria, 23–29 July 2022, pp. 2662–2668. ijcai.org (2022)

    Google Scholar 

  10. Kern-Isberner, G.: Conditionals in Nonmonotonic Reasoning and Belief Revision, vol. 2087. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44600-1

    Book  MATH  Google Scholar 

  11. Kern-Isberner, G.: A thorough axiomatization of a principle of conditional preservation in belief revision. Ann. Math. Artif. Intell. 40(1–2), 127–164 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  12. Kern-Isberner, G., Beierle, C., Brewka, G.: Syntax splitting = relevance + independence: new postulates for nonmonotonic reasoning from conditional belief bases. In: Calvanese, D., Erdem, E., Thielscher, M. (eds.) Proceedings of the 17th International Conference on Principles of Knowledge Representation and Reasoning, KR 2020, Rhodes, Greece, 12–18 September 2020, pp. 560–571 (2020)

    Google Scholar 

  13. Kern-Isberner, G., Brewka, G.: Strong syntax splitting for iterated belief revision. In: Sierra, C. (ed.) Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence, IJCAI 2017, Melbourne, Australia, 19–25 August 2017, pp. 1131–1137. ijcai.org (2017)

    Google Scholar 

  14. Kraus, S., Lehmann, D., Magidor, M.: Nonmonotonic reasoning, preferential models and cumulative logics. Artif. Intell. 44(1–2), 167–207 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  15. Lehmann, D.: Another perspective on default reasoning. Ann. Math. Artif. Intell. 15(1), 61–82 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  16. Nute, D.: Conditional Logic. In: Gabbay, D., Guenthner, F. (eds.) Handbook of Philosophical Logic, pp. 387–439. Springer, Dordrecht (1984). https://doi.org/10.1007/978-94-009-6259-0_8

    Chapter  MATH  Google Scholar 

  17. Parikh, R.: Beliefs, belief revision, and splitting languages, pp. 266–278. Center for the Study of Language and Information (1999)

    Google Scholar 

  18. Pearl, J.: System Z: A natural ordering of defaults with tractable applications to nonmonotonic reasoning. In: Parikh, R. (ed.) Proceedings of the 3rd Conference on Theoretical Aspects of Reasoning about Knowledge, Pacific Grove, CA, USA, March 1990, pp. 121–135. Morgan Kaufmann (1990)

    Google Scholar 

  19. Sezgin, M., Kern-Isberner, G., Beierle, C.: Ranking kinematics for revising by contextual information. Ann. Math. Artif. Intell. 89(10–11), 1101–1131 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  20. Spohn, W.: The Laws of Belief - Ranking Theory and Its Philosophical Applications. Oxford University Press, Oxford (2014)

    Google Scholar 

Download references

Acknowledgments

This work was supported by grants of the German Research Foundation (DFG) awarded to Gabriele Kern-Isberner (KE 1413/14-1) and to Christoph Beierle (BE 1700/10-1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Wilhelm .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wilhelm, M., Sezgin, M., Kern-Isberner, G., Haldimann, J., Beierle, C., Heyninck, J. (2023). Splitting Techniques for Conditional Belief Bases in the Context of c-Representations. In: Gaggl, S., Martinez, M.V., Ortiz, M. (eds) Logics in Artificial Intelligence. JELIA 2023. Lecture Notes in Computer Science(), vol 14281. Springer, Cham. https://doi.org/10.1007/978-3-031-43619-2_32

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-43619-2_32

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-43618-5

  • Online ISBN: 978-3-031-43619-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics