Abstract
Causal multiteam semantics is a framework where probabilistic notions and causal inference can be studied in a unified setting. We study a logic (\(\mathcal {PCO}\)) that features marginal probabilities, observations and interventionist counterfactuals, and allows expressing conditional probability statements, do expressions and other mixtures of causal and probabilistic reasoning. Our main contribution is a strongly complete infinitary axiomatisation for \(\mathcal {PCO}\).
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
- 2.
- 3.
Throughout the paper, the semantic relation in terms of which \(T^\alpha \) is defined will be the semantic relation for language \(\mathcal{C}\mathcal{O}\), which will soon be defined.
- 4.
Whereas \(\Pr (\alpha )>0\) could be replaced with \((\lnot \alpha )^C\), and \((X=x)^C\) could be also expessed as \(\bigvee _{x' \ne x} X = x'\), the use of probability atoms in \((X\ne x)^C\) seems essential.
- 5.
Save for some inessential differences, this is is the content of Theorem 3.4 from [9].
- 6.
It seems to us that an axiom analogous to P3b should be added also to the system in [32].
References
Alechina, N.: Logic with probabilistic operators. Proc. ACCOLADE 1994, 121–138 (1995)
Baldi, P., Cintula, P., Noguera, C.: Classical and fuzzy two-layered modal logics for uncertainty: translations and proof-theory. Int. J. Comput. Intell. Syst. 13, 988–1001 (2020). https://doi.org/10.2991/ijcis.d.200703.001
Barbero, F., Galliani, P.: Embedding causal team languages into predicate logic. Ann. Pure Appl. Logic 173, 103–159 (2022). https://doi.org/10.1016/j.apal.2022.103159
Barbero, F., Sandu, G.: Interventionist counterfactuals on causal teams. In: CREST 2018 Proceedings - Electronic Proceedings in Theoretical Computer Science, vol. 286, pp. 16–30. Open Publishing Association (2019). https://doi.org/10.4204/eptcs.286.2
Barbero, F., Sandu, G.: Team semantics for interventionist counterfactuals: observations vs. interventions. J. Philos. Logic 50, 471–521 (2021)
Barbero, F., Sandu, G.: Multiteam semantics for interventionist counterfactuals: probabilities and causation (2023). pre-print, arxiv:2305.02613
Barbero, F., Virtema, J.: Expressivity landscape for logics with probabilistic interventionist counterfactuals. CoRR abs/2303.11993 (2023). https://doi.org/10.48550/arXiv.2303.11993
Barbero, F., Virtema, J.: Strongly complete axiomatization for a logic with probabilistic interventionist counterfactuals. arXiv preprint arXiv:2304.02964 (2023)
Barbero, F., Yang, F.: Characterizing counterfactuals and dependencies over (generalized) causal teams. Notre Dame J. Formal Logic 63(3), 301–341 (2022). https://doi.org/10.1215/00294527-2022-0017
Bareinboim, E., Correa, J., Ibeling, D., Icard, T.: On pearl’s hierarchy and the foundations of causal inference (1st edition). In: Geffner, H., Dechter, R., Halpern, J.Y. (eds.) Probabilistic and Causal Inference: the Works of Judea Pearl, pp. 507–556. ACM Books (2022)
Bílková, M., Cintula, P., Lávička, T.: Lindenbaum and Pair extension lemma in infinitary logics. In: Moss, L.S., de Queiroz, R., Martinez, M. (eds.) WoLLIC 2018. LNCS, vol. 10944, pp. 130–144. Springer, Heidelberg (2018). https://doi.org/10.1007/978-3-662-57669-4_7
Briggs, R.: Interventionist counterfactuals. Philos. Stud. Int. J. Philos. Anal. Trad. 160(1), 139–166 (2012)
Fagin, R., Halpern, J.Y., Megiddo, N.: A logic for reasoning about probabilities. Inf. Comput. 87(1–2), 78–128 (1990)
Galles, D., Pearl, J.: An axiomatic characterization of causal counterfactuals. Found. Sci. 3(1), 151–182 (1998)
Hájek, P., Godo, L., Esteva, F.: Fuzzy logic and probability. In: Proceedings of the Uncertainty in Artificial Intelligence UAI, vol. 95, pp. 237–244 (1995)
Halpern, J.: Actual Causality. MIT Press, Cambridge (2016)
Halpern, J.Y.: Axiomatizing causal reasoning. J. Artif. Int. Res. 12(1), 317–337 (2000)
Halpern, J.Y., Peters, S.: Reasoning about causal models with infinitely many variables. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 36, pp. 5668–5675 (2022)
Heckman, J.J., Vytlacil, E.J.: Econometric evaluation of social programs, part i: causal models, structural models and econometric policy evaluation. Handb. Econ. 6, 4779–4874 (2007)
Heifetz, A., Mongin, P.: Probability logic for type spaces. Games Econom. Behav. 35(1), 31–53 (2001). https://doi.org/10.1006/game.1999.0788
Hernan, M., Robins, J.: Causal Inference: What if. Chapman & Hall/CRC, Boca Raton (forthcoming)
Hitchcock, C.: Causal models. In: Zalta, E.N., Nodelman, U. (eds.) The Stanford Encyclopedia of Philosophy. Metaphysics Research Lab, Stanford University, Spring 2023 edn. (2023)
Hodges, W.: Compositional semantics for a language of imperfect information. Logic J. IGPL 5, 539–563 (1997)
Ibeling, D., Icard, T.: Probabilistic reasoning across the causal hierarchy. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, pp. 10170–10177 (2020)
Morgan, S.L., Winship, C.: Counterfactuals and Causal Inference. Cambridge University Press, Cambridge (2015)
Ognjanović, Z., Perović, A., Rašković, M.: Logics with the qualitative probability operator. Logic J. IGPL 16(2), 105–120 (2008). https://doi.org/10.1093/jigpal/jzm031
Ognjanović, Z., Rašković, M., Marković, Z.: Probability Logics: Probability-Based Formalization of Uncertain Reasoning. Springer, Berlin (2016)
Pearl, J.: Causality: Models, Reasoning, and Inference. Cambridge University Press, New York, NY, USA (2000)
Pearl, J., Glymour, M., Jewell, N.P.: Causal Inference in Statistics: A Primer. Wiley, Hoboken (2016)
Pearl, J., Mackenzie, D.: The Book of Why: The New Science Of Cause and Effect. Basic Books, New York City (2018)
Peters, J., Janzing, D., Schölkopf, B.: Elements of Causal Inference: Foundations and Learning Algorithms. MIT Press, Cambridge (2017)
Rašković, M., Ognjanović, Z., Marković, Z.: A logic with conditional probabilities. In: Alferes, J.J., Leite, J. (eds.) JELIA 2004. LNCS (LNAI), vol. 3229, pp. 226–238. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30227-8_21
Spirtes, P., Glymour, C., Scheines, R.N.: Causation, Prediction, and Search. Lecture Notes in Statistics, vol. 81. Springer, New York (1993)
Väänänen, J.: Dependence Logic: A New Approach to Independence Friendly Logic, London Mathematical Society Student Texts, vol. 70. Cambridge University Press, Cambridge (2007)
Woodward, J.: Making Things Happen, Oxford Studies in the Philosophy of Science, vol. 114. Oxford University Press, Oxford (2003)
Acknowledgments
Fausto Barbero was partially supported by the DFG grant VI 1045-1/1 and by the Academy of Finland grants 316460 and 349803. Jonni Virtema was partially supported by the DFG grant VI 1045-1/1 and by the Academy of Finland grant 338259.
Author information
Authors and Affiliations
Corresponding authors
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Barbero, F., Virtema, J. (2023). Strongly Complete Axiomatization for a Logic with Probabilistic Interventionist Counterfactuals. In: Gaggl, S., Martinez, M.V., Ortiz, M. (eds) Logics in Artificial Intelligence. JELIA 2023. Lecture Notes in Computer Science(), vol 14281. Springer, Cham. https://doi.org/10.1007/978-3-031-43619-2_44
Download citation
DOI: https://doi.org/10.1007/978-3-031-43619-2_44
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-43618-5
Online ISBN: 978-3-031-43619-2
eBook Packages: Computer ScienceComputer Science (R0)