Skip to main content

Strongly Complete Axiomatization for a Logic with Probabilistic Interventionist Counterfactuals

  • Conference paper
  • First Online:
Logics in Artificial Intelligence (JELIA 2023)

Abstract

Causal multiteam semantics is a framework where probabilistic notions and causal inference can be studied in a unified setting. We study a logic (\(\mathcal {PCO}\)) that features marginal probabilities, observations and interventionist counterfactuals, and allows expressing conditional probability statements, do expressions and other mixtures of causal and probabilistic reasoning. Our main contribution is a strongly complete infinitary axiomatisation for \(\mathcal {PCO}\).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    The idea of modeling imperfect information via team semantics was developed by Hodges [23] and Väänänen [34].

  2. 2.

    An axiomatization of this kind has also been found for a probabilistic fuzzy logic ([15]), which has been proved to be intertranslatable with (classical) probabilistic logic with arithmetical operators ([2]).

  3. 3.

    Throughout the paper, the semantic relation in terms of which \(T^\alpha \) is defined will be the semantic relation for language \(\mathcal{C}\mathcal{O}\), which will soon be defined.

  4. 4.

    Whereas \(\Pr (\alpha )>0\) could be replaced with \((\lnot \alpha )^C\), and \((X=x)^C\) could be also expessed as \(\bigvee _{x' \ne x} X = x'\), the use of probability atoms in \((X\ne x)^C\) seems essential.

  5. 5.

    Save for some inessential differences, this is is the content of Theorem 3.4 from [9].

  6. 6.

    It seems to us that an axiom analogous to P3b should be added also to the system in [32].

References

  1. Alechina, N.: Logic with probabilistic operators. Proc. ACCOLADE 1994, 121–138 (1995)

    Google Scholar 

  2. Baldi, P., Cintula, P., Noguera, C.: Classical and fuzzy two-layered modal logics for uncertainty: translations and proof-theory. Int. J. Comput. Intell. Syst. 13, 988–1001 (2020). https://doi.org/10.2991/ijcis.d.200703.001

    Article  Google Scholar 

  3. Barbero, F., Galliani, P.: Embedding causal team languages into predicate logic. Ann. Pure Appl. Logic 173, 103–159 (2022). https://doi.org/10.1016/j.apal.2022.103159

    Article  MathSciNet  MATH  Google Scholar 

  4. Barbero, F., Sandu, G.: Interventionist counterfactuals on causal teams. In: CREST 2018 Proceedings - Electronic Proceedings in Theoretical Computer Science, vol. 286, pp. 16–30. Open Publishing Association (2019). https://doi.org/10.4204/eptcs.286.2

  5. Barbero, F., Sandu, G.: Team semantics for interventionist counterfactuals: observations vs. interventions. J. Philos. Logic 50, 471–521 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  6. Barbero, F., Sandu, G.: Multiteam semantics for interventionist counterfactuals: probabilities and causation (2023). pre-print, arxiv:2305.02613

  7. Barbero, F., Virtema, J.: Expressivity landscape for logics with probabilistic interventionist counterfactuals. CoRR abs/2303.11993 (2023). https://doi.org/10.48550/arXiv.2303.11993

  8. Barbero, F., Virtema, J.: Strongly complete axiomatization for a logic with probabilistic interventionist counterfactuals. arXiv preprint arXiv:2304.02964 (2023)

  9. Barbero, F., Yang, F.: Characterizing counterfactuals and dependencies over (generalized) causal teams. Notre Dame J. Formal Logic 63(3), 301–341 (2022). https://doi.org/10.1215/00294527-2022-0017

    Article  MathSciNet  MATH  Google Scholar 

  10. Bareinboim, E., Correa, J., Ibeling, D., Icard, T.: On pearl’s hierarchy and the foundations of causal inference (1st edition). In: Geffner, H., Dechter, R., Halpern, J.Y. (eds.) Probabilistic and Causal Inference: the Works of Judea Pearl, pp. 507–556. ACM Books (2022)

    Google Scholar 

  11. Bílková, M., Cintula, P., Lávička, T.: Lindenbaum and Pair extension lemma in infinitary logics. In: Moss, L.S., de Queiroz, R., Martinez, M. (eds.) WoLLIC 2018. LNCS, vol. 10944, pp. 130–144. Springer, Heidelberg (2018). https://doi.org/10.1007/978-3-662-57669-4_7

    Chapter  MATH  Google Scholar 

  12. Briggs, R.: Interventionist counterfactuals. Philos. Stud. Int. J. Philos. Anal. Trad. 160(1), 139–166 (2012)

    MathSciNet  Google Scholar 

  13. Fagin, R., Halpern, J.Y., Megiddo, N.: A logic for reasoning about probabilities. Inf. Comput. 87(1–2), 78–128 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  14. Galles, D., Pearl, J.: An axiomatic characterization of causal counterfactuals. Found. Sci. 3(1), 151–182 (1998)

    Article  MathSciNet  Google Scholar 

  15. Hájek, P., Godo, L., Esteva, F.: Fuzzy logic and probability. In: Proceedings of the Uncertainty in Artificial Intelligence UAI, vol. 95, pp. 237–244 (1995)

    Google Scholar 

  16. Halpern, J.: Actual Causality. MIT Press, Cambridge (2016)

    Book  MATH  Google Scholar 

  17. Halpern, J.Y.: Axiomatizing causal reasoning. J. Artif. Int. Res. 12(1), 317–337 (2000)

    MathSciNet  MATH  Google Scholar 

  18. Halpern, J.Y., Peters, S.: Reasoning about causal models with infinitely many variables. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 36, pp. 5668–5675 (2022)

    Google Scholar 

  19. Heckman, J.J., Vytlacil, E.J.: Econometric evaluation of social programs, part i: causal models, structural models and econometric policy evaluation. Handb. Econ. 6, 4779–4874 (2007)

    Google Scholar 

  20. Heifetz, A., Mongin, P.: Probability logic for type spaces. Games Econom. Behav. 35(1), 31–53 (2001). https://doi.org/10.1006/game.1999.0788

    Article  MathSciNet  MATH  Google Scholar 

  21. Hernan, M., Robins, J.: Causal Inference: What if. Chapman & Hall/CRC, Boca Raton (forthcoming)

    Google Scholar 

  22. Hitchcock, C.: Causal models. In: Zalta, E.N., Nodelman, U. (eds.) The Stanford Encyclopedia of Philosophy. Metaphysics Research Lab, Stanford University, Spring 2023 edn. (2023)

    Google Scholar 

  23. Hodges, W.: Compositional semantics for a language of imperfect information. Logic J. IGPL 5, 539–563 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  24. Ibeling, D., Icard, T.: Probabilistic reasoning across the causal hierarchy. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, pp. 10170–10177 (2020)

    Google Scholar 

  25. Morgan, S.L., Winship, C.: Counterfactuals and Causal Inference. Cambridge University Press, Cambridge (2015)

    Google Scholar 

  26. Ognjanović, Z., Perović, A., Rašković, M.: Logics with the qualitative probability operator. Logic J. IGPL 16(2), 105–120 (2008). https://doi.org/10.1093/jigpal/jzm031

    Article  MathSciNet  MATH  Google Scholar 

  27. Ognjanović, Z., Rašković, M., Marković, Z.: Probability Logics: Probability-Based Formalization of Uncertain Reasoning. Springer, Berlin (2016)

    Book  MATH  Google Scholar 

  28. Pearl, J.: Causality: Models, Reasoning, and Inference. Cambridge University Press, New York, NY, USA (2000)

    MATH  Google Scholar 

  29. Pearl, J., Glymour, M., Jewell, N.P.: Causal Inference in Statistics: A Primer. Wiley, Hoboken (2016)

    MATH  Google Scholar 

  30. Pearl, J., Mackenzie, D.: The Book of Why: The New Science Of Cause and Effect. Basic Books, New York City (2018)

    MATH  Google Scholar 

  31. Peters, J., Janzing, D., Schölkopf, B.: Elements of Causal Inference: Foundations and Learning Algorithms. MIT Press, Cambridge (2017)

    MATH  Google Scholar 

  32. Rašković, M., Ognjanović, Z., Marković, Z.: A logic with conditional probabilities. In: Alferes, J.J., Leite, J. (eds.) JELIA 2004. LNCS (LNAI), vol. 3229, pp. 226–238. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30227-8_21

    Chapter  Google Scholar 

  33. Spirtes, P., Glymour, C., Scheines, R.N.: Causation, Prediction, and Search. Lecture Notes in Statistics, vol. 81. Springer, New York (1993)

    Google Scholar 

  34. Väänänen, J.: Dependence Logic: A New Approach to Independence Friendly Logic, London Mathematical Society Student Texts, vol. 70. Cambridge University Press, Cambridge (2007)

    Book  MATH  Google Scholar 

  35. Woodward, J.: Making Things Happen, Oxford Studies in the Philosophy of Science, vol. 114. Oxford University Press, Oxford (2003)

    Google Scholar 

Download references

Acknowledgments

Fausto Barbero was partially supported by the DFG grant VI 1045-1/1 and by the Academy of Finland grants 316460 and 349803. Jonni Virtema was partially supported by the DFG grant VI 1045-1/1 and by the Academy of Finland grant 338259.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Fausto Barbero or Jonni Virtema .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Barbero, F., Virtema, J. (2023). Strongly Complete Axiomatization for a Logic with Probabilistic Interventionist Counterfactuals. In: Gaggl, S., Martinez, M.V., Ortiz, M. (eds) Logics in Artificial Intelligence. JELIA 2023. Lecture Notes in Computer Science(), vol 14281. Springer, Cham. https://doi.org/10.1007/978-3-031-43619-2_44

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-43619-2_44

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-43618-5

  • Online ISBN: 978-3-031-43619-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics