Abstract
Extensions of Answer Set Programming with language constructs from temporal logics, such as temporal equilibrium logic over finite traces (\(\text {TEL}_{\!f}\)), provide an expressive computational framework for modeling dynamic applications. In this paper, we study the so-called past-present syntactic subclass, which consists of a set of logic programming rules whose body references to the past and head to the present. Such restriction ensures that the past remains independent of the future, which is the case in most dynamic domains. We extend the definitions of completion and loop formulas to the case of past-present formulas, which allows for capturing the temporal stable models of past-present temporal programs by means of an \(\text {LTL}_{\!f}\) expression.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Aguado, F., Cabalar, P., Pérez, G., Vidal, C.: Loop formulas for splitable temporal logic programs. In: Delgrande, J.P., Faber, W. (eds.) LPNMR 2011. LNCS (LNAI), vol. 6645, pp. 80–92. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-20895-9_9
Aguado, F., et al.: Linear-time temporal answer set programming. Theory Pract. Log. Program. 23(1), 2–56 (2023)
Baral, C., Zhao, J.: Non-monotonic temporal logics for goal specification. In: Veloso, M.M. (ed.) IJCAI 2007, Proceedings of the 20th International Joint Conference on Artificial Intelligence, Hyderabad, India, 6–12 January 2007, pp. 236–242 (2007)
Baral, C., Zhao, J.: Non-monotonic temporal logics that facilitate elaboration tolerant revision of goals. In: Fox, D., Gomes, C.P. (eds.) Proceedings of the Twenty-Third AAAI Conference on Artificial Intelligence, AAAI 2008, Chicago, Illinois, USA, 13–17 July 2008, pp. 406–411. AAAI Press (2008)
Bozzelli, L., Pearce, D.: On the expressiveness of temporal equilibrium logic. In: Michael, L., Kakas, A. (eds.) JELIA 2016. LNCS (LNAI), vol. 10021, pp. 159–173. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-48758-8_11
Brachman, R.J., Levesque, H.J.: Knowledge Representation and Reasoning. Elsevier (2004). http://www.elsevier.com/wps/find/bookdescription.cws_home/702602/description
Brewka, G., Eiter, T., Truszczyński, M.: Answer set programming at a glance. Commun. ACM 54(12), 92–103 (2011)
Cabalar, P., Kaminski, R., Morkisch, P., Schaub, T.: telingo = ASP + Time. In: Balduccini, M., Lierler, Y., Woltran, S. (eds.) Logic Programming and Nonmonotonic Reasoning. LPNMR 2019. LNCS, vol. 11481, pp. 256–269. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-20528-7_19
Cabalar, P., Kaminski, R., Schaub, T., Schuhmann, A.: Temporal answer set programming on finite traces. Theory Pract. Log. Program. 18(3–4), 406–420 (2018)
Cabalar, P., Diéguez, M., Laferrière, F., Schaub, T.: Past-present temporal programs over finite traces (2023). https://arxiv.org/pdf/2307.12620.pdf
Clark, K.: Negation as failure. In: Gallaire, H., Minker, J. (eds.) Logic and Data Bases, pp. 293–322. Plenum Press (1978)
De Giacomo, G., Vardi, M.: Linear temporal logic and linear dynamic logic on finite traces. In: Rossi, F. (ed.) Proceedings of the Twenty-third International Joint Conference on Artificial Intelligence (IJCAI’13), pp. 854–860. IJCAI/AAAI Press (2013)
Emerson, E.: Temporal and modal logic. In: van Leeuwen, J. (ed.) Handbook of Theoretical Computer Science, pp. 995–1072. MIT Press (1990)
Erdem, E., Lifschitz, V.: Tight logic programs. Theory Pract. Log. Program. 3(4–5), 499–518 (2003)
Fages, F.: Consistency of Clark’s completion and the existence of stable models. J. Methods Log. Comput. Sci. 1, 51–60 (1994)
Ferraris, P., Lee, J., Lifschitz, V.: A generalization of the Lin-Zhao theorem. Ann. Math. Artif. Intell. 47(1–2), 79–101 (2006)
Gabbay, D.: The declarative past and imperative future. In: Banieqbal, B., Barringer, H., Pnueli, A. (eds.) Temporal Logic in Specification. LNCS, vol. 398, pp. 409–448. Springer, Heidelberg (1989). https://doi.org/10.1007/3-540-51803-7_36
Gebser, M., Kaminski, R., Kaufmann, B., Ostrowski, M., Schaub, T., Thiele, S.: Engineering an incremental ASP solver. In: Garcia de la Banda, M., Pontelli, E. (eds.) ICLP 2008. LNCS, vol. 5366, pp. 190–205. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-89982-2_23
Giacomo, G.D., Stasio, A.D., Fuggitti, F., Rubin, S.: Pure-past linear temporal and dynamic logic on finite traces. In: Bessiere, C. (ed.) Proceedings of the Twenty-ninth International Joint Conference on Artificial Intelligence, (IJCAI’20), pp. 4959–4965. ijcai.org (2020)
González, G., Baral, C., Cooper, P.A.: Modeling multimedia displays using action based temporal logic. In: Zhou, X., Pu, P. (eds.) Visual and Multimedia Information Management. ITIFIP, vol. 88, pp. 141–155. Springer, Boston, MA (2002). https://doi.org/10.1007/978-0-387-35592-4_11
Lifschitz, V.: Answer set planning. In: de Schreye, D. (ed.) Proceedings of the International Conference on Logic Programming (ICLP’99), pp. 23–37. MIT Press (1999)
Lin, F., Zhao, J.: On tight logic programs and yet another translation from normal logic programs to propositional logic. In: Gottlob, G., Walsh, T. (eds.) Proceedings of the Eighteenth International Joint Conference on Artificial Intelligence (IJCAI’03), pp. 853–858. Morgan Kaufmann Publishers (2003)
Pearce, D.: A new logical characterisation of stable models and answer sets. In: Dix, J., Pereira, L.M., Przymusinski, T.C. (eds.) NMELP 1996. LNCS, vol. 1216, pp. 57–70. Springer, Heidelberg (1997). https://doi.org/10.1007/BFb0023801
Pnueli, A.: The temporal logic of programs. In: Proceedings of the Eight-Teenth Symposium on Foundations of Computer Science (FOCS’77), pp. 46–57. IEEE Computer Society Press (1977)
Sandewall, E.: Features and Fluents: The Representation of Knowledge About Dynamical Systems, vol. 1. Oxford University Press, New York, NY, USA (1994)
Acknowledgments
This work was supported by MICINN, Spain, grant PID2020-116201GB-I00, Xunta de Galicia, Spain (GPC ED431B 2019/03), Région Pays de la Loire, France, (project etoiles montantes CTASP) and DFG grant SCHA 550/15, Germany.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Cabalar, P., Diéguez, M., Laferrière, F., Schaub, T. (2023). Past-Present Temporal Programs over Finite Traces. In: Gaggl, S., Martinez, M.V., Ortiz, M. (eds) Logics in Artificial Intelligence. JELIA 2023. Lecture Notes in Computer Science(), vol 14281. Springer, Cham. https://doi.org/10.1007/978-3-031-43619-2_53
Download citation
DOI: https://doi.org/10.1007/978-3-031-43619-2_53
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-43618-5
Online ISBN: 978-3-031-43619-2
eBook Packages: Computer ScienceComputer Science (R0)