Skip to main content

Past-Present Temporal Programs over Finite Traces

  • Conference paper
  • First Online:
Logics in Artificial Intelligence (JELIA 2023)

Abstract

Extensions of Answer Set Programming with language constructs from temporal logics, such as temporal equilibrium logic over finite traces (\(\text {TEL}_{\!f}\)), provide an expressive computational framework for modeling dynamic applications. In this paper, we study the so-called past-present syntactic subclass, which consists of a set of logic programming rules whose body references to the past and head to the present. Such restriction ensures that the past remains independent of the future, which is the case in most dynamic domains. We extend the definitions of completion and loop formulas to the case of past-present formulas, which allows for capturing the temporal stable models of past-present temporal programs by means of an \(\text {LTL}_{\!f}\) expression.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Aguado, F., Cabalar, P., Pérez, G., Vidal, C.: Loop formulas for splitable temporal logic programs. In: Delgrande, J.P., Faber, W. (eds.) LPNMR 2011. LNCS (LNAI), vol. 6645, pp. 80–92. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-20895-9_9

    Chapter  MATH  Google Scholar 

  2. Aguado, F., et al.: Linear-time temporal answer set programming. Theory Pract. Log. Program. 23(1), 2–56 (2023)

    Article  MathSciNet  Google Scholar 

  3. Baral, C., Zhao, J.: Non-monotonic temporal logics for goal specification. In: Veloso, M.M. (ed.) IJCAI 2007, Proceedings of the 20th International Joint Conference on Artificial Intelligence, Hyderabad, India, 6–12 January 2007, pp. 236–242 (2007)

    Google Scholar 

  4. Baral, C., Zhao, J.: Non-monotonic temporal logics that facilitate elaboration tolerant revision of goals. In: Fox, D., Gomes, C.P. (eds.) Proceedings of the Twenty-Third AAAI Conference on Artificial Intelligence, AAAI 2008, Chicago, Illinois, USA, 13–17 July 2008, pp. 406–411. AAAI Press (2008)

    Google Scholar 

  5. Bozzelli, L., Pearce, D.: On the expressiveness of temporal equilibrium logic. In: Michael, L., Kakas, A. (eds.) JELIA 2016. LNCS (LNAI), vol. 10021, pp. 159–173. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-48758-8_11

    Chapter  Google Scholar 

  6. Brachman, R.J., Levesque, H.J.: Knowledge Representation and Reasoning. Elsevier (2004). http://www.elsevier.com/wps/find/bookdescription.cws_home/702602/description

  7. Brewka, G., Eiter, T., Truszczyński, M.: Answer set programming at a glance. Commun. ACM 54(12), 92–103 (2011)

    Article  Google Scholar 

  8. Cabalar, P., Kaminski, R., Morkisch, P., Schaub, T.: telingo = ASP + Time. In: Balduccini, M., Lierler, Y., Woltran, S. (eds.) Logic Programming and Nonmonotonic Reasoning. LPNMR 2019. LNCS, vol. 11481, pp. 256–269. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-20528-7_19

  9. Cabalar, P., Kaminski, R., Schaub, T., Schuhmann, A.: Temporal answer set programming on finite traces. Theory Pract. Log. Program. 18(3–4), 406–420 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  10. Cabalar, P., Diéguez, M., Laferrière, F., Schaub, T.: Past-present temporal programs over finite traces (2023). https://arxiv.org/pdf/2307.12620.pdf

  11. Clark, K.: Negation as failure. In: Gallaire, H., Minker, J. (eds.) Logic and Data Bases, pp. 293–322. Plenum Press (1978)

    Google Scholar 

  12. De Giacomo, G., Vardi, M.: Linear temporal logic and linear dynamic logic on finite traces. In: Rossi, F. (ed.) Proceedings of the Twenty-third International Joint Conference on Artificial Intelligence (IJCAI’13), pp. 854–860. IJCAI/AAAI Press (2013)

    Google Scholar 

  13. Emerson, E.: Temporal and modal logic. In: van Leeuwen, J. (ed.) Handbook of Theoretical Computer Science, pp. 995–1072. MIT Press (1990)

    Google Scholar 

  14. Erdem, E., Lifschitz, V.: Tight logic programs. Theory Pract. Log. Program. 3(4–5), 499–518 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  15. Fages, F.: Consistency of Clark’s completion and the existence of stable models. J. Methods Log. Comput. Sci. 1, 51–60 (1994)

    Google Scholar 

  16. Ferraris, P., Lee, J., Lifschitz, V.: A generalization of the Lin-Zhao theorem. Ann. Math. Artif. Intell. 47(1–2), 79–101 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  17. Gabbay, D.: The declarative past and imperative future. In: Banieqbal, B., Barringer, H., Pnueli, A. (eds.) Temporal Logic in Specification. LNCS, vol. 398, pp. 409–448. Springer, Heidelberg (1989). https://doi.org/10.1007/3-540-51803-7_36

    Chapter  Google Scholar 

  18. Gebser, M., Kaminski, R., Kaufmann, B., Ostrowski, M., Schaub, T., Thiele, S.: Engineering an incremental ASP solver. In: Garcia de la Banda, M., Pontelli, E. (eds.) ICLP 2008. LNCS, vol. 5366, pp. 190–205. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-89982-2_23

    Chapter  Google Scholar 

  19. Giacomo, G.D., Stasio, A.D., Fuggitti, F., Rubin, S.: Pure-past linear temporal and dynamic logic on finite traces. In: Bessiere, C. (ed.) Proceedings of the Twenty-ninth International Joint Conference on Artificial Intelligence, (IJCAI’20), pp. 4959–4965. ijcai.org (2020)

    Google Scholar 

  20. González, G., Baral, C., Cooper, P.A.: Modeling multimedia displays using action based temporal logic. In: Zhou, X., Pu, P. (eds.) Visual and Multimedia Information Management. ITIFIP, vol. 88, pp. 141–155. Springer, Boston, MA (2002). https://doi.org/10.1007/978-0-387-35592-4_11

    Chapter  Google Scholar 

  21. Lifschitz, V.: Answer set planning. In: de Schreye, D. (ed.) Proceedings of the International Conference on Logic Programming (ICLP’99), pp. 23–37. MIT Press (1999)

    Google Scholar 

  22. Lin, F., Zhao, J.: On tight logic programs and yet another translation from normal logic programs to propositional logic. In: Gottlob, G., Walsh, T. (eds.) Proceedings of the Eighteenth International Joint Conference on Artificial Intelligence (IJCAI’03), pp. 853–858. Morgan Kaufmann Publishers (2003)

    Google Scholar 

  23. Pearce, D.: A new logical characterisation of stable models and answer sets. In: Dix, J., Pereira, L.M., Przymusinski, T.C. (eds.) NMELP 1996. LNCS, vol. 1216, pp. 57–70. Springer, Heidelberg (1997). https://doi.org/10.1007/BFb0023801

    Chapter  Google Scholar 

  24. Pnueli, A.: The temporal logic of programs. In: Proceedings of the Eight-Teenth Symposium on Foundations of Computer Science (FOCS’77), pp. 46–57. IEEE Computer Society Press (1977)

    Google Scholar 

  25. Sandewall, E.: Features and Fluents: The Representation of Knowledge About Dynamical Systems, vol. 1. Oxford University Press, New York, NY, USA (1994)

    MATH  Google Scholar 

Download references

Acknowledgments

This work was supported by MICINN, Spain, grant PID2020-116201GB-I00, Xunta de Galicia, Spain (GPC ED431B 2019/03), Région Pays de la Loire, France, (project etoiles montantes CTASP) and DFG grant SCHA 550/15, Germany.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to François Laferrière .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Cabalar, P., Diéguez, M., Laferrière, F., Schaub, T. (2023). Past-Present Temporal Programs over Finite Traces. In: Gaggl, S., Martinez, M.V., Ortiz, M. (eds) Logics in Artificial Intelligence. JELIA 2023. Lecture Notes in Computer Science(), vol 14281. Springer, Cham. https://doi.org/10.1007/978-3-031-43619-2_53

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-43619-2_53

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-43618-5

  • Online ISBN: 978-3-031-43619-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics