Skip to main content

Contrastive Explanations for Answer-Set Programs

  • Conference paper
  • First Online:
Logics in Artificial Intelligence (JELIA 2023)

Abstract

Answer-Set Programming (ASP) is a popular declarative reasoning and problem solving formalism. Due to the increasing interest in explainability, several explanation approaches have been developed for ASP. However, while those formalisms are correct and interesting on their own, most are more technical and less oriented towards philosophical or social concepts of explanation. In this work, we study the notion of contrastive explanation, i.e., answering questions of the form “Why P instead of Q?”, in the context of ASP. In particular, we are interested in answering why atoms are included in an answer set, whereas others are not. Contrastive explainability has recently become popular due to its strong support from the philosophical, cognitive, and social sciences and its apparent ability to provide explanations that are concise and intuitive for humans. We formally define contrastive explanations for ASP based on counterfactual reasoning about programs. Furthermore, we demonstrate the usefulness of the concept on example applications and give some complexity results. The latter also provide a guideline as to how the explanations can be computed in practice.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abels, D., Jordi, J., Ostrowski, M., Schaub, T., Toletti, A., Wanko, P.: Train scheduling with hybrid ASP. In: Balduccini, M., Lierler, Y., Woltran, S. (eds.) LPNMR. LNCS, vol. 11481, pp. 3–17. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-20528-7_1

    Chapter  Google Scholar 

  2. Ali, R., El-Kholany, M.M.S., Gebser, M.: Flexible job-shop scheduling for semiconductor manufacturing with hybrid answer set programming (application paper). In: Hanus, M., Inclezan, D. (eds.) PADL 2023. LNCS, pp. 85–95. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-24841-2_6

    Chapter  Google Scholar 

  3. Beierle, C., Dusso, O., Kern-Isberner, G.: Using answer set programming for a decision support system. In: Baral, C., Greco, G., Leone, N., Terracina, G. (eds.) LPNMR 2005. LNCS (LNAI), vol. 3662, pp. 374–378. Springer, Heidelberg (2005). https://doi.org/10.1007/11546207_30

    Chapter  MATH  Google Scholar 

  4. Brain, M., Gebser, M., Pührer, J., Schaub, T., Tompits, H., Woltran, S.: Debugging ASP programs by means of ASP. In: Baral, C., Brewka, G., Schlipf, J. (eds.) LPNMR 2007. LNCS (LNAI), vol. 4483, pp. 31–43. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-72200-7_5

    Chapter  Google Scholar 

  5. Buss, S.R., Krajıcek, J., Takeuti, G.: On provably total functions in bounded arithmetic theories. In: Clote, P., Krajıcek, J. (eds.) Arithmetic, Proof Theory and Computational Complexity, pp. 116–161. Oxford University Press (1993)

    Google Scholar 

  6. Cabalar, P., Fandinno, J., Muñiz, B.: A system for explainable answer set programming. In: Technical Communications of the 36th International Conference on Logic Programming (ICLP 2020). EPTCS, vol. 325, pp. 124–136 (2020). https://doi.org/10.4204/EPTCS.325.19

  7. Chen, Z., Toda, S.: The complexity of selecting maximal solutions. Inf. Comput. 119(2), 231–239 (1995). https://doi.org/10.1006/inco.1995.1087

    Article  MathSciNet  MATH  Google Scholar 

  8. Comploi-Taupe, R., Francescutto, G., Schenner, G.: Applying incremental answer set solving to product configuration. In: Proceedings o the 26th ACM International Systems and Software Product Line Conference (SPLC 2022), pp. 150–155. ACM (2022). https://doi.org/10.1145/3503229.3547069

  9. Console, L., Torasso, P.: A spectrum of logical definitions of model-based diagnosis. Comput. Intell. 7, 133–141 (1991). https://doi.org/10.1111/j.1467-8640.1991.tb00388.x

    Article  Google Scholar 

  10. Dantsin, E., Eiter, T., Gottlob, G., Voronkov, A.: Complexity and expressive power of logic programming. ACM Comput. Surv. 33(3), 374–425 (2001). https://doi.org/10.1145/502807.502810

    Article  Google Scholar 

  11. Eiter, T., Geibinger, T., Ruiz, N.H., Oetsch, J.: A logic-based approach to contrastive explainability for neurosymbolic visual question answering. In: Proceedings of the 32rd International Joint Conference on Artificial Intelligence (IJCAI 2023) (2023). https://www.ijcai.org/proceedings/2023/408

  12. Eiter, T., Gottlob, G., Leone, N.: Abduction from logic programs: semantics and complexity. Theor. Comput. Sci. 189(1), 129–177 (1997). https://doi.org/10.1016/S0304-3975(96)00179-X

    Article  MathSciNet  MATH  Google Scholar 

  13. Erdem, E., Gelfond, M., Leone, N.: Applications of answer set programming. AI Mag. 37(3), 53–68 (2016). https://doi.org/10.1609/aimag.v37i3.2678

    Article  Google Scholar 

  14. Erdem, E., Oztok, U.: Generating explanations for biomedical queries. Theory Pract. Logic Program. 15(1), 35–78 (2015). https://doi.org/10.1017/S1471068413000598

    Article  MathSciNet  MATH  Google Scholar 

  15. Falkner, A., Friedrich, G., Schekotihin, K., Taupe, R., Teppan, E.C.: Industrial applications of answer set programming. KI - Künstliche Intell. 32(2), 165–176 (2018). https://doi.org/10.1007/s13218-018-0548-6

    Article  Google Scholar 

  16. Fandinno, J.: Deriving conclusions from non-monotonic cause-effect relations. Theory Pract. Logic Program. 16(5–6), 670–687 (2016). https://doi.org/10.1017/S1471068416000466

    Article  MathSciNet  MATH  Google Scholar 

  17. Fandinno, J., Schulz, C.: Answering the “why’’ in answer set programming - A survey of explanation approaches. Theory Pract. Logic Program. 19(2), 114–203 (2019). https://doi.org/10.1017/S1471068418000534

    Article  MathSciNet  MATH  Google Scholar 

  18. Gelfond, M., Lifschitz, V.: Classical negation in logic programs and disjunctive databases. New Gener. Comput. 9, 365–385 (1991)

    Article  MATH  Google Scholar 

  19. Halpern, J.Y.: A modification of the Halpern-pearl definition of causality. In: Yang, Q., Wooldridge, M.J. (eds.) Proceedings of the 24th International Joint Conference on Artificial Intelligence (IJCAI 2015), pp. 3022–3033. AAAI Press (2015). https://ijcai.org/Abstract/15/427

  20. Halpern, J.Y., Pearl, J.: Causes and explanations: a structural-model approach - part II: explanations. In: Proceedings of the 17th International Joint Conference on Artificial Intelligence (IJCAI 2001), pp. 27–34. Morgan Kaufmann (2001)

    Google Scholar 

  21. Halpern, J.Y., Pearl, J.: Causes and explanations: a structural-model approach: Part 1: causes. In: Proceedings of the 17th Conference in Uncertainty in Artificial Intelligence (UAI 2001), pp. 194–202. Morgan Kaufmann (2001)

    Google Scholar 

  22. Ignatiev, A., Narodytska, N., Asher, N., Marques-Silva, J.: From contrastive to abductive explanations and back again. In: Baldoni, M., Bandini, S. (eds.) AIxIA 2020. LNCS (LNAI), vol. 12414, pp. 335–355. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-77091-4_21

    Chapter  Google Scholar 

  23. Inclezan, D.: An application of answer set programming to the field of second language acquisition. Theory Pract. Logic Program. 15(1), 1–17 (2015). https://doi.org/10.1017/S1471068413000653

    Article  MATH  Google Scholar 

  24. Janota, M., Marques-Silva, J.: On the query complexity of selecting minimal sets for monotone predicates. Artif. Intell. 233, 73–83 (2016). https://doi.org/10.1016/j.artint.2016.01.002

    Article  MathSciNet  MATH  Google Scholar 

  25. Kakas, A.C., Kowalski, R.A., Toni, F.: Abductive logic programming. J. Logic Comput. 2(6), 719–770 (1992). https://doi.org/10.1093/logcom/2.6.719

    Article  MathSciNet  MATH  Google Scholar 

  26. Kean, A.: A characterization of contrastive explanations computation. In: Lee, H.-Y., Motoda, H. (eds.) PRICAI 1998. LNCS, vol. 1531, pp. 599–610. Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0095304

    Chapter  Google Scholar 

  27. Krarup, B., Krivic, S., Magazzeni, D., Long, D., Cashmore, M., Smith, D.E.: Contrastive explanations of plans through model restrictions. J. Artif. Intell. Res. 72, 533–612 (2021). https://doi.org/10.1613/jair.1.12813

    Article  MATH  Google Scholar 

  28. Lakkaraju, H., Bach, S.H., Leskovec, J.: Interpretable decision sets: a joint framework for description and prediction. In: Proceedings of the 22nd ACM SIGKDD International Conference on (KDD 2016), pp. 1675–1684. ACM (2016). https://doi.org/10.1145/2939672.2939874

  29. Lifschitz, V.: Answer set programming and plan generation. Artif. Intell. 138(1–2), 39–54 (2002). https://doi.org/10.1016/S0004-3702(02)00186-8

    Article  MathSciNet  MATH  Google Scholar 

  30. Lipton, P.: Contrastive explanation. R. Inst. Philos. Suppl. 27, 247–266 (1990). https://doi.org/10.1017/S1358246100005130

    Article  Google Scholar 

  31. Marques-Silva, J.: Logic-based explainability in machine learning. In: Bertossi, L., Xiao, G. (eds.) Reasoning Web. Causality, Explanations and Declarative Knowledge. LNCS, pp. 24–104. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-31414-8_2

    Chapter  Google Scholar 

  32. Miller, T.: Explanation in artificial intelligence: insights from the social sciences. Artif. Intell. 267, 1–38 (2019). https://doi.org/10.1016/j.artint.2018.07.007

    Article  MathSciNet  MATH  Google Scholar 

  33. Miller, T.: Contrastive explanation: a structural-model approach. Knowl. Eng. Rev. 36, e14 (2021). https://doi.org/10.1017/S0269888921000102

    Article  Google Scholar 

  34. Nguyen, V., Stylianos, V.L., Son, T.C., Yeoh, W.: Explainable planning using answer set programming. In: Proceedings of the 17th International Conference on Principles of Knowledge Representation and Reasoning (KR 2020). pp. 662–666 (2020). https://doi.org/10.24963/kr.2020/66

  35. Oetsch, J., Pührer, J., Tompits, H.: Catching the ouroboros: on debugging non-ground answer-set programs. Theory Pract. Log. Program. 10(4–6), 513–529 (2010). https://doi.org/10.1017/S1471068410000256

    Article  MathSciNet  MATH  Google Scholar 

  36. Oetsch, J., Pührer, J., Tompits, H.: Stepwise debugging of answer-set programs. Theory Pract. Logic Program. 18(1), 30–80 (2018). https://doi.org/10.1017/S1471068417000217

    Article  MathSciNet  MATH  Google Scholar 

  37. Papadimitriou, C.H.: Computational Complexity. Addison-Wesley, Boston (1994)

    MATH  Google Scholar 

  38. Pontelli, E., Son, T.C., Elkhatib, O.: Justifications for logic programs under answer set semantics. Theory Pract. Logic Program. 9(1), 1–56 (2009). https://doi.org/10.1017/S1471068408003633

    Article  MathSciNet  MATH  Google Scholar 

  39. Sakama, C., Inoue, K.: Updating extended logic programs through abduction. In: Gelfond, M., Leone, N., Pfeifer, G. (eds.) LPNMR 1999. LNCS (LNAI), vol. 1730, pp. 147–161. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-46767-X_11

    Chapter  MATH  Google Scholar 

  40. Schulz, C., Toni, F.: Justifying answer sets using argumentation. Theory Pract. Logic Program. 16(1), 59–110 (2016). https://doi.org/10.1017/S1471068414000702

    Article  MathSciNet  MATH  Google Scholar 

  41. Schwitter, R.: Specifying and verbalising answer set programs in controlled natural language. Theory Pract. Logic Program. 18(3–4), 691–705 (2018). https://doi.org/10.1017/S1471068418000327

    Article  MathSciNet  MATH  Google Scholar 

  42. Shen, Y., Eiter, T.: Determining inference semantics for disjunctive logic programs. Artif. Intell. 277, 103165 (2019). https://doi.org/10.1016/j.artint.2019.103165

    Article  MathSciNet  MATH  Google Scholar 

  43. Son, T.C., Nguyen, V., Vasileiou, S.L., Yeoh, W.: Model reconciliation in logic programs. In: Faber, W., Friedrich, G., Gebser, M., Morak, M. (eds.) JELIA 2021. LNCS (LNAI), vol. 12678, pp. 393–406. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-75775-5_26

    Chapter  MATH  Google Scholar 

  44. Viegas Damásio, C., Analyti, A., Antoniou, G.: Justifications for logic programming. In: Cabalar, P., Son, T.C. (eds.) LPNMR 2013. LNCS (LNAI), vol. 8148, pp. 530–542. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40564-8_53

    Chapter  MATH  Google Scholar 

  45. Wang, Y., Eiter, T., Zhang, Y., Lin, F.: Witnesses for answer sets of logic programs. ACM Trans. Comput. Logic (2022). https://doi.org/10.1145/3568955

    Article  MATH  Google Scholar 

  46. Yli-Jyrä, A., Rankooh, M.F., Janhunen, T.: Pruning redundancy in answer set optimization applied to preventive maintenance scheduling. In: Hanus, M., Inclezan, D. (eds.) PADL 2023. LNCS, pp. 279–294. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-24841-2_18

    Chapter  Google Scholar 

  47. Zhuang, Z., Delgrande, J.P., Nayak, A.C., Sattar, A.: Reconsidering AGM-style belief revision in the context of logic programs. In: Proceedings of the 22nd European Conference on Artificial Intelligence (ECAI 2016). Frontiers in Artificial Intelligence and Applications, vol. 285, pp. 671–679. IOS Press (2016). https://doi.org/10.3233/978-1-61499-672-9-671

Download references

Acknowledgments

This work was supported by funding from the Bosch Center for Artificial Intelligence. Furthermore, Tobias Geibinger is a recipient of a DOC Fellowship of the Austrian Academy of Sciences at the Institute of Logic and Computation at the TU Wien.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tobias Geibinger .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Eiter, T., Geibinger, T., Oetsch, J. (2023). Contrastive Explanations for Answer-Set Programs. In: Gaggl, S., Martinez, M.V., Ortiz, M. (eds) Logics in Artificial Intelligence. JELIA 2023. Lecture Notes in Computer Science(), vol 14281. Springer, Cham. https://doi.org/10.1007/978-3-031-43619-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-43619-2_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-43618-5

  • Online ISBN: 978-3-031-43619-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics