Skip to main content

Abstract

Crisis situations can lead to extreme consequences for society and the economy, such as the disruption of supply chains and the collapse of critical infrastructure. The challenge for optimal crisis preparation lies in the unpredictability of causes, duration and scope, and severity. AI-based resilience services can aid in crisis preparation by providing software-based warnings, recommendations, and countermeasures. The aim of this paper is to present a method for evaluating such services in terms of their usefulness and acceptance. A questionnaire is presented, and the results of its piloting phase are disseminated. With these results, existing and projected AI-based services for crisis prevention can be evaluated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kuwertz, A., Moll, M., Sander, J., et al.: A systemic approach for early warning in crisis prevention and management. In: Ahram, T., Karwowski, W., Pickl, S., et al. (eds.) Human Systems Engineering and Design II, vol. 1026, pp. 517–522. Springer International Publishing, Cham (2020)

    Chapter  Google Scholar 

  2. Wang, Y.: Financial crisis prediction model of listed companies based on statistics and AI. Sci. Program. 2022, 1 (2022). https://doi.org/10.1155/2022/1118023

    Article  Google Scholar 

  3. Ohana, J.J., Ohana, S., Benhamou, E., et al.: Explainable AI (XAI) models applied to the multi-agent environment of financial markets. In: Calvaresi, D., Najjar, A., Winikoff, M., et al. (eds.) Explainable and Transparent AI and Multi-Agent Systems, vol. 12688, pp. 189–207. Springer International Publishing, Cham (2021)

    Chapter  Google Scholar 

  4. Venkateswarlu, Y., Baskar, K., Wongchai, A., et al.: An efficient outlier detection with deep learning-based financial crisis prediction model in big data environment. Comput. Intell. Neurosci. 2022, 4948947 (2022). https://doi.org/10.1155/2022/4948947

    Article  Google Scholar 

  5. Li, G., Wang, J., Wang, X.: Construction and path of urban public safety governance and crisis management optimization model integrating artificial intelligence technology. Sustainability 15, 7487 (2023). https://doi.org/10.3390/su15097487

    Article  Google Scholar 

  6. Khalili, N., Hamidi, H.: Artificial intelligence applications addressing different aspects of the Covid-19 crisis and key technological solutions for future epidemics control. In: 2021 11th International Conference on Computer Engineering and Knowledge (ICCKE), pp. 379–386. IEEE (2021–2021)

    Google Scholar 

  7. Janzen, S., Gdanitz, N., Abdel Khaliq, L., et al.: Anticipating energy-driven crises in process industry by AI-based scenario planning. In: Proceedings of the 56th Hawaii International Conference on System Sciences, pp. 3673–3683 (2023)

    Google Scholar 

  8. Dahmani, S., Ben-Ammar, O., Jebali, A.: Resilient project scheduling using artificial intelligence: a conceptual framework. In: Dolgui, A., Bernard, A., Lemoine, D., von Cieminski, G., Romero, D. (eds.) APMS 2021. IAICT, vol. 630, pp. 311–320. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-85874-2_33

    Chapter  Google Scholar 

  9. Heinicke, M.: Framework for resilient production systems. In: Grabot, B., Vallespir, B., Gomes, S., Bouras, A., Kiritsis, D. (eds.) APMS 2014. IAICT, vol. 440, pp. 200–207. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-44733-8_25

    Chapter  Google Scholar 

  10. ISO/IEC Systems and software engineering - Systems and software Quality Requirements and Evaluation (SQuaRE) - Guide to SQuaRE 35.080 (25000) (2014). https://www.beuth.de/de/norm/iso-iec-25000/204260933

  11. Krafft, T., Zweig, K.: Transparenz und Nachvollziehbarkeit Algorithmenbasierter Entscheidungsprozesse: Ein Regulierungsvorschlagaus sozioinformatischer Perspektive. 2, Berlin (2019)

    Google Scholar 

  12. BMWi Das Projekt GAIA-X: Eine vernetzte Dateninfrastruktur als Wiege eines vitalen, europäischen Ökosystems, Berlin (2019)

    Google Scholar 

  13. Advaneo GmbH Das Projekt PAIRS: Privacy-Aware, Intelligent and Resilient CrisiS Management (2022). https://www.pairs-projekt.de/de/. Accessed 17 Apr 2023

  14. Kamalahmadi, M., Parast, M.M.: A review of the literature on the principles of enterprise and supply chain resilience: major findings and directions for future research. Int. J. Prod. Econ. 171, 116–133 (2016). https://doi.org/10.1016/j.ijpe.2015.10.023

    Article  Google Scholar 

  15. Linnartz, M., Schuh, G., Stich, V.: A framework for structuring resilience and its application to procurement. In: Proceedings of the Conference on Production Systems and Logistics: CPSL 2022, pp. 52–61 (2022). https://doi.org/10.15488/12194

  16. Annarelli, A., Nonino, F.: Strategic and operational management of organizational resilience: current state of research and future directions. Omega 62, 1–18 (2016). https://doi.org/10.1016/j.omega.2015.08.004

    Article  Google Scholar 

  17. Ali, A., Mahfouz, A., Arisha, A.: Analysing supply chain resilience: integrating the constructs in a concept mapping framework via a systematic literature review. SCM 22, 16–39 (2017). https://doi.org/10.1108/SCM-06-2016-0197

    Article  Google Scholar 

  18. Davis, F.D.: Perceived usefulness, perceived ease of use, and user acceptance of information technology. MIS Q. 13, 319 (1989). https://doi.org/10.2307/249008

    Article  Google Scholar 

  19. Venkatesh, M., Davis, G.B.: User acceptance of information technology: toward a unified view. MIS Q. 27, 425 (2003). https://doi.org/10.2307/30036540

    Article  Google Scholar 

  20. Kelly, S., Kaye, S-A., Oviedo-Trespalacios, O.: What factors contribute to the acceptance of artificial intelligence? a systematic review (2023). https://doi.org/10.1016/j.tele.2022.101925.

  21. IEEE Std 610.12–1990//610.12–1990 IEEE Standard Glossary of Software Engineering Terminology. IEEE; IEEE/Institute of Electrical and Electronics Engineers Incorporated, s.l

    Google Scholar 

  22. Myllyaho, L., Raatikainen, M., Männistö, T., et al.: Systematic literature review of validation methods for AI systems. J. Syst. Softw. 181, 111050 (2021). https://doi.org/10.1016/j.jss.2021.111050

    Article  Google Scholar 

  23. Proposal for a Regulation: Artificial Intelligence Act: AIA (2021)

    Google Scholar 

  24. Torraco, R.J.: Writing integrative literature reviews: guidelines and examples. Hum. Resour. Dev. Rev. 4, 356–367 (2005). https://doi.org/10.1177/1534484305278283

    Article  Google Scholar 

  25. Sinclair, M.A.: Questionnaire design. Appl. Ergon. 6, 73–80 (1975). https://doi.org/10.1016/0003-6870(75)90299-9

    Article  Google Scholar 

  26. Benning, J., Boersma, S.: PAIRS-Projekt: Akzeptanz- und Nutzenevaluierung (2023). https://forms.office.com/Pages/AnalysisPage.aspx?AnalyzerToken=EQUsz3DxWwB0ugLO2Nt9bAyZarOZRp4n&id=ttodnf2xK0OS75r9okgdJYeL7TkF_MhNlpW-Cj2WusdUMkw2RDlSVFI1MkhUVjVHTFZFWTMwVDhQMi4u. Accessed 24 Apr 2023

Download references

Acknowledgements

This effort has been funded by the Deutsches Zentrum für Luft- und Raumfahrt e.V. (DLR) program (01MK21008B) and the Bundesministerium für Wirtschaft und Klimaschatz (BMWK) under the name PAIRS. The authors wish to acknowledge the DLR and BMWK for their support. We also wish to acknowledge our gratitude and appreciation to all the PAIRS project partners for their contribution during the development of various ideas and concepts presented in this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Justus Benning .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 IFIP International Federation for Information Processing

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Boos, W., Stroh, MF., Phalachandra, R.H., Selvi, S., Boersma, S., Benning, J. (2023). Measuring Acceptance and Benefits of AI-Based Resilience Services. In: Alfnes, E., Romsdal, A., Strandhagen, J.O., von Cieminski, G., Romero, D. (eds) Advances in Production Management Systems. Production Management Systems for Responsible Manufacturing, Service, and Logistics Futures. APMS 2023. IFIP Advances in Information and Communication Technology, vol 690. Springer, Cham. https://doi.org/10.1007/978-3-031-43666-6_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-43666-6_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-43665-9

  • Online ISBN: 978-3-031-43666-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics