Abstract
Crisis situations can lead to extreme consequences for society and the economy, such as the disruption of supply chains and the collapse of critical infrastructure. The challenge for optimal crisis preparation lies in the unpredictability of causes, duration and scope, and severity. AI-based resilience services can aid in crisis preparation by providing software-based warnings, recommendations, and countermeasures. The aim of this paper is to present a method for evaluating such services in terms of their usefulness and acceptance. A questionnaire is presented, and the results of its piloting phase are disseminated. With these results, existing and projected AI-based services for crisis prevention can be evaluated.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
References
Kuwertz, A., Moll, M., Sander, J., et al.: A systemic approach for early warning in crisis prevention and management. In: Ahram, T., Karwowski, W., Pickl, S., et al. (eds.) Human Systems Engineering and Design II, vol. 1026, pp. 517–522. Springer International Publishing, Cham (2020)
Wang, Y.: Financial crisis prediction model of listed companies based on statistics and AI. Sci. Program. 2022, 1 (2022). https://doi.org/10.1155/2022/1118023
Ohana, J.J., Ohana, S., Benhamou, E., et al.: Explainable AI (XAI) models applied to the multi-agent environment of financial markets. In: Calvaresi, D., Najjar, A., Winikoff, M., et al. (eds.) Explainable and Transparent AI and Multi-Agent Systems, vol. 12688, pp. 189–207. Springer International Publishing, Cham (2021)
Venkateswarlu, Y., Baskar, K., Wongchai, A., et al.: An efficient outlier detection with deep learning-based financial crisis prediction model in big data environment. Comput. Intell. Neurosci. 2022, 4948947 (2022). https://doi.org/10.1155/2022/4948947
Li, G., Wang, J., Wang, X.: Construction and path of urban public safety governance and crisis management optimization model integrating artificial intelligence technology. Sustainability 15, 7487 (2023). https://doi.org/10.3390/su15097487
Khalili, N., Hamidi, H.: Artificial intelligence applications addressing different aspects of the Covid-19 crisis and key technological solutions for future epidemics control. In: 2021 11th International Conference on Computer Engineering and Knowledge (ICCKE), pp. 379–386. IEEE (2021–2021)
Janzen, S., Gdanitz, N., Abdel Khaliq, L., et al.: Anticipating energy-driven crises in process industry by AI-based scenario planning. In: Proceedings of the 56th Hawaii International Conference on System Sciences, pp. 3673–3683 (2023)
Dahmani, S., Ben-Ammar, O., Jebali, A.: Resilient project scheduling using artificial intelligence: a conceptual framework. In: Dolgui, A., Bernard, A., Lemoine, D., von Cieminski, G., Romero, D. (eds.) APMS 2021. IAICT, vol. 630, pp. 311–320. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-85874-2_33
Heinicke, M.: Framework for resilient production systems. In: Grabot, B., Vallespir, B., Gomes, S., Bouras, A., Kiritsis, D. (eds.) APMS 2014. IAICT, vol. 440, pp. 200–207. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-44733-8_25
ISO/IEC Systems and software engineering - Systems and software Quality Requirements and Evaluation (SQuaRE) - Guide to SQuaRE 35.080 (25000) (2014). https://www.beuth.de/de/norm/iso-iec-25000/204260933
Krafft, T., Zweig, K.: Transparenz und Nachvollziehbarkeit Algorithmenbasierter Entscheidungsprozesse: Ein Regulierungsvorschlagaus sozioinformatischer Perspektive. 2, Berlin (2019)
BMWi Das Projekt GAIA-X: Eine vernetzte Dateninfrastruktur als Wiege eines vitalen, europäischen Ökosystems, Berlin (2019)
Advaneo GmbH Das Projekt PAIRS: Privacy-Aware, Intelligent and Resilient CrisiS Management (2022). https://www.pairs-projekt.de/de/. Accessed 17 Apr 2023
Kamalahmadi, M., Parast, M.M.: A review of the literature on the principles of enterprise and supply chain resilience: major findings and directions for future research. Int. J. Prod. Econ. 171, 116–133 (2016). https://doi.org/10.1016/j.ijpe.2015.10.023
Linnartz, M., Schuh, G., Stich, V.: A framework for structuring resilience and its application to procurement. In: Proceedings of the Conference on Production Systems and Logistics: CPSL 2022, pp. 52–61 (2022). https://doi.org/10.15488/12194
Annarelli, A., Nonino, F.: Strategic and operational management of organizational resilience: current state of research and future directions. Omega 62, 1–18 (2016). https://doi.org/10.1016/j.omega.2015.08.004
Ali, A., Mahfouz, A., Arisha, A.: Analysing supply chain resilience: integrating the constructs in a concept mapping framework via a systematic literature review. SCM 22, 16–39 (2017). https://doi.org/10.1108/SCM-06-2016-0197
Davis, F.D.: Perceived usefulness, perceived ease of use, and user acceptance of information technology. MIS Q. 13, 319 (1989). https://doi.org/10.2307/249008
Venkatesh, M., Davis, G.B.: User acceptance of information technology: toward a unified view. MIS Q. 27, 425 (2003). https://doi.org/10.2307/30036540
Kelly, S., Kaye, S-A., Oviedo-Trespalacios, O.: What factors contribute to the acceptance of artificial intelligence? a systematic review (2023). https://doi.org/10.1016/j.tele.2022.101925.
IEEE Std 610.12–1990//610.12–1990 IEEE Standard Glossary of Software Engineering Terminology. IEEE; IEEE/Institute of Electrical and Electronics Engineers Incorporated, s.l
Myllyaho, L., Raatikainen, M., Männistö, T., et al.: Systematic literature review of validation methods for AI systems. J. Syst. Softw. 181, 111050 (2021). https://doi.org/10.1016/j.jss.2021.111050
Proposal for a Regulation: Artificial Intelligence Act: AIA (2021)
Torraco, R.J.: Writing integrative literature reviews: guidelines and examples. Hum. Resour. Dev. Rev. 4, 356–367 (2005). https://doi.org/10.1177/1534484305278283
Sinclair, M.A.: Questionnaire design. Appl. Ergon. 6, 73–80 (1975). https://doi.org/10.1016/0003-6870(75)90299-9
Benning, J., Boersma, S.: PAIRS-Projekt: Akzeptanz- und Nutzenevaluierung (2023). https://forms.office.com/Pages/AnalysisPage.aspx?AnalyzerToken=EQUsz3DxWwB0ugLO2Nt9bAyZarOZRp4n&id=ttodnf2xK0OS75r9okgdJYeL7TkF_MhNlpW-Cj2WusdUMkw2RDlSVFI1MkhUVjVHTFZFWTMwVDhQMi4u. Accessed 24 Apr 2023
Acknowledgements
This effort has been funded by the Deutsches Zentrum für Luft- und Raumfahrt e.V. (DLR) program (01MK21008B) and the Bundesministerium für Wirtschaft und Klimaschatz (BMWK) under the name PAIRS. The authors wish to acknowledge the DLR and BMWK for their support. We also wish to acknowledge our gratitude and appreciation to all the PAIRS project partners for their contribution during the development of various ideas and concepts presented in this paper.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 IFIP International Federation for Information Processing
About this paper
Cite this paper
Boos, W., Stroh, MF., Phalachandra, R.H., Selvi, S., Boersma, S., Benning, J. (2023). Measuring Acceptance and Benefits of AI-Based Resilience Services. In: Alfnes, E., Romsdal, A., Strandhagen, J.O., von Cieminski, G., Romero, D. (eds) Advances in Production Management Systems. Production Management Systems for Responsible Manufacturing, Service, and Logistics Futures. APMS 2023. IFIP Advances in Information and Communication Technology, vol 690. Springer, Cham. https://doi.org/10.1007/978-3-031-43666-6_9
Download citation
DOI: https://doi.org/10.1007/978-3-031-43666-6_9
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-43665-9
Online ISBN: 978-3-031-43666-6
eBook Packages: Computer ScienceComputer Science (R0)