Skip to main content

Does Regulating Work-In-Process Increase Throughput and Reduce Cycle Times? An Assessment by Lab Scale System Models

  • Conference paper
  • First Online:
Advances in Production Management Systems. Production Management Systems for Responsible Manufacturing, Service, and Logistics Futures (APMS 2023)

Part of the book series: IFIP Advances in Information and Communication Technology ((IFIPAICT,volume 691))

  • 891 Accesses

Abstract

Production planning and control systems that regulate the Work-In-Process (WIP) in the production system are argued to increase throughput and reduce cycle times. This study assesses the performance of Kanban, Constant WIP (ConWIP) and a hybrid Kanban/ConWIP system that is typically realized in real life production lines with limited buffer space. A physical lab scale system model of a production line is built, and a new digital twin framework to realize production planning and control implemented. Results indicate that production planning and control systems that regulate the WIP reduce the time it takes a job to pass through the production system. However, they reduce throughput, and consequently increase the time a worker (capacity) spends with the job (processing and waiting). The term “cycle time” may refer to both in the literature. Results highlight that there is a trade-off, which has important implications for practice since management must decide which cycle time is the most important in their shop. This study further shows how production planning and control systems can be implemented using new technology, and it highlights the potential of lab scale system models as alternatives to computer simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hopp, W.J., Spearman, M.L.: Factory Physics: Foundations of Manufacturing Management. Irwin/McGraw-Hill, Irwin, Chicago, IL (1996)

    Google Scholar 

  2. Spearman, M.L., Zazanis, M.A.: Push and pull production systems: issues and comparisons. Oper. Res. 40(3), 521–532 (1992)

    Article  MATH  Google Scholar 

  3. Spearman, M.L., Woodruff, D.L., Hopp, W.J.: CONWIP Redux: reflections on 30 years of development and implementation. Int. J. Prod. Res. 60(1), 381–387 (2022)

    Article  Google Scholar 

  4. Monden, Y.: Production Management. Toyota Production System: Practical Approach to Production Management.Industrial Engineering and Management Press, Norcross, Georgia (1983)

    Google Scholar 

  5. Junior, M.L., Godinho Filho, M.: Variations of the Kanban system: literature review and classification. Int. J. Prod. Econ. 125(1), 13–21 (2010)

    Google Scholar 

  6. Ohno, T., Bodek, N.: Toyota Production System: Beyond Large-scale Production. Productivity Press, New York (2019)

    Google Scholar 

  7. Sugimori, Y., Kusunoki, K., Cho, F., Uchikawa, S.: Toyota production system and Kanban system materialization of just-in-time and respect-for-human system. Int. J. Prod. Res. 15(6), 553–564 (1977)

    Article  Google Scholar 

  8. Spearman, M.L., Woodruff, D.L., Hopp, W.J.: CONWIP: a pull alternative to Kanban. Int. J. Prod. Res. 28(5), 879–894 (1990)

    Article  Google Scholar 

  9. Framinan, J.M., González, P.L., Ruiz-Usano, R.: The CONWIP production control system: review and research issues. Prod. Plan. Control 14(3), 255–265 (2010)

    Article  Google Scholar 

  10. Prakash, J., Chin, J.F.: Modified CONWIP systems: a review and classification. Prod. Plan. Control 26(4), 296–307 (2015)

    Google Scholar 

  11. Jaegler, Y., Jaegler, A., Burlat, P., Lamouri, S., Trentesaux, D.: The ConWip production control system: a systematic review and classification. Int. J. Prod. Res. 56(17), 5736–5757 (2018)

    Article  Google Scholar 

  12. Thürer, M., Stevenson, M., Protzman, C.W.: Card-based production control: a review of the control mechanisms underpinning Kanban, ConWIP, POLCA and COBACABANA systems. Prod. Plan. Control 27(14), 1143–1157 (2016)

    Google Scholar 

  13. Pettersen, J.-A., Segerstedt, A.: Restricted work-in-process: a study of differences between Kanban and CONWIP. Int. J. Prod. Econ. 118(1), 199–207 (2009)

    Article  Google Scholar 

  14. Buzacott, J.A.: The production capacity of job shops with limited storage space. Int. J. Prod. Res. 14(5), 597–605 (1976)

    Article  Google Scholar 

  15. Leisten, R.: Flowshop sequencing problems with limited buffer storage. Int. J. Prod. Res. 28(11), 2085–2100 (1990)

    Article  MATH  Google Scholar 

  16. Liu, S.Q., Kozan, E., Masoud, M., Zhang, Y., Chan, F.T.S.: Job shop scheduling with a combination of four buffering constraints. Int. J. Prod. Res. 56(9), 3274–3293 (2018)

    Article  Google Scholar 

  17. Roser, C., Lorentzen, K., Deuse, J.: Reliable shop floor bottleneck detection for flow lines through process and inventory observations. Procedia Cirp 19, 63–68 (2014)

    Article  Google Scholar 

  18. Berkley, B.J.: A review of the Kanban production control research literature. Prod. Manag. Oper. 1(4), 393–411 (1992)

    Article  Google Scholar 

  19. Bonvik, A.M., Couch, C.E., Gershwin, S.B.: A comparison of production-line control mechanisms. Int. J. Prod. Res. 35(3), 789–804 (1997)

    Article  MATH  Google Scholar 

  20. Onyeocha, C.E., Geraghty, J.: A modification of the hybrid Kanban-CONWIP production control strategy for multi-product manufacturing systems. In: Proceedings of the Winter Simulation Conference, pp. 2730–2741. IEEE (2012)

    Google Scholar 

  21. Bagni, G., Godinho Filho, M., Thürer, M., Stevenson, M.: Systematic review and discussion of production control systems that emerged between 1999 and 2018. Prod. Plan. Control 32(7), 511–525 (2021)

    Google Scholar 

  22. Geraghty, J., Heavey, C.: A comparison of hybrid push/pull and CONWIP/pull production inventory control policies. Int. J. Prod. Econ. 91(1), 75–90 (2004)

    Article  Google Scholar 

  23. Wang, D., Xu, C.-G.: Hybrid push pull production control strategy simulation and its applications. Prod. Plan. Control 8(2), 142–151 (1997)

    Article  Google Scholar 

  24. Lugaresi, G., Alba, V.V., Matta, A.: Lab-scale models of manufacturing systems for testing real-time simulation and production control technologies. J. Manuf. Syst. 58, 93–108 (2021)

    Article  Google Scholar 

  25. Shao, G.: Use Case Scenarios for Digital Twin Implementation Based on ISO 23247 (2021). https://doi.org/10.6028/nist.Ams.400-2

  26. Kombaya Touckia, J., Hamani, N., Kermad, L.: Digital twin framework for reconfigurable manufacturing systems (RMSs): design and simulation. Int. J. Adv. Manuf. Technol. 120(7–8), 5431–5450 (2022)

    Article  Google Scholar 

  27. Noga, M., Juhás, M., Gulan, M.: Hybrid virtual commissioning of a robotic manipulator with machine vision using a single controller. Sensors (Basel) 22(4), 1621 (2022). https://doi.org/10.3390/s22041621

  28. Tao, F., Zhan, H., Liu, A., Nee, A.Y.C.: Digital twin in industry: state-of-the-art. IEEE Trans. Ind. Inf. 15(4), 2405–2415 (2019)

    Article  Google Scholar 

  29. Tao, F., Qi, Q., Liu, A., Kusiak, A.: Data-driven smart manufacturing. J. Manuf. Syst. 48, 157–169 (2018)

    Article  Google Scholar 

  30. Naik, N.: Choice of effective messaging protocols for IoT systems: MQTT, CoAP, AMQP and HTTP. In: 2017 IEEE International Systems Engineering Symposium (ISSE), pp. 1–7 (2017)

    Google Scholar 

  31. Rinaldi, S., Bonafini, F., Ferrari, P., Flammini, A., Sisinni, E., Bianchini, D.: Impact of data model on performance of timeseries database for internet of things applications. In: 2019 IEEE International Instrumentation and Measurement Technology Conference (I2MTC), pp. 1–6 (2019)

    Google Scholar 

  32. Nasar, M., Kausar, M.A.: Suitability of Influxdb database for IoT applications. Int. J. Innov. Technol. Explor. Eng. 8(10), 1850–1857 (2019)

    Article  Google Scholar 

  33. Netland, T.H., Schloetzer, J.D., Ferdows, K.: Learning lean: rhythm of production and the pace of lean implementation. Int. J. Oper. Prod. Manag. 41(2), 131–156 (2021)

    Article  Google Scholar 

  34. Mönch, T., Huchzermeier, A., Bebersdorf, P.: Variable takt time groups and workload equilibrium. Int. J. Prod. Res. 60(5), 1535–1552 (2022)

    Article  Google Scholar 

  35. Thürer, M., Tomašević, I., Stevenson, M.: On the meaning of ‘waste’: review and definition. Prod. Plan. Control 28(3), 244–255 (2017)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthias Thürer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 IFIP International Federation for Information Processing

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Thürer, M., Li, S.S., Yang, C., Qu, T., Huang, G.Q. (2023). Does Regulating Work-In-Process Increase Throughput and Reduce Cycle Times? An Assessment by Lab Scale System Models. In: Alfnes, E., Romsdal, A., Strandhagen, J.O., von Cieminski, G., Romero, D. (eds) Advances in Production Management Systems. Production Management Systems for Responsible Manufacturing, Service, and Logistics Futures. APMS 2023. IFIP Advances in Information and Communication Technology, vol 691. Springer, Cham. https://doi.org/10.1007/978-3-031-43670-3_45

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-43670-3_45

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-43669-7

  • Online ISBN: 978-3-031-43670-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics