Skip to main content

Abstract

On-time delivery is one of the most critical performance characteristics of manufacturing companies. To remain competitive, companies must constantly strive to optimize their logistical performance. Poor on-time delivery has complex causes that are difficult to identify due to the many logistical interdependencies. Increasing market volatility, complex products and production processes, and individual customer requirements further complicate the situation. Digitalization has led to more and more data being available, which requires additional capabilities in data analysis. In order to obtain a fundamental overview of planning quality in production, this paper presents two simple descriptive models. These models can visualize the progression of different KPIs for measuring the planning quality along different production steps. In addition, they allow conclusions to be drawn about the extent to which specific product characteristics have an influence on the planning quality. A case study evaluates the models using a real data set from a maintenance service provider. As production is a complex process that cannot be perfectly planned, these models help to fundamentally understand planning errors and provide a basis for further exploration.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    For confidentiality reasons, the values of the plan deviations have been removed. Still, the relations shown correspond to the real situation.

References

  1. Handfield, R., Straube, F., Pfohl, H.-C., Wieland, C.: Trends and Strategies in Logistics and Supply Chain Management: Embracing Global Logistics Complexity to Drive Market Advantage. DVV Media Group, Hamburg, 81 p. (2013)

    Google Scholar 

  2. Schuh, G., Stich, V., Brosze, T., Potente, T., Jasinski, T., Cuber, S.: Delivery reliability in machinery and equipment industry. Int. J. Appl. Logist. 3(1), 20–38 (2012)

    Article  Google Scholar 

  3. Schmidt, M., Bertsch, S., Nyhuis, P.: Schedule compliance operating curves and their application in designing the supply chain of a metal producer. Prod. Plan. Control 25(2), 123–133 (2014)

    Article  Google Scholar 

  4. Wiendahl, H.-H., von Cieminski, G., Wiendahl, H.-P.: Stumbling blocks of PPC: towards the holistic configuration of PPC systems. Prod. Plan. Control 16(7), 634–651 (2005)

    Article  Google Scholar 

  5. Hu, S.J., Zhu, X., Wang, H., Koren, Y.: Product variety and manufacturing complexity in assembly systems and supply chains. CIRP Ann. 57(1), 45–48 (2008)

    Article  Google Scholar 

  6. Mack, O., Khare, A., Krämer, A., Burgartz, T.: Managing in a VUCA World, 259 p. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-16889-0

  7. Duffie, N., Bendul, J., Knollmann, M.: An analytical approach to improving due-date and lead-time dynamics in production systems. J. Manuf. Syst. 45, 273–285 (2017)

    Article  Google Scholar 

  8. Bueno, A., Godinho Filho, M., Frank, A.G.: Smart production planning and control in the Industry 4.0 context: a systematic literature review. Comput. Ind. Eng. 149, 106774 (2020)

    Google Scholar 

  9. Cowling, P., Johansson, M.: Using real time information for effective dynamic scheduling. Eur. J. Oper. Res. 139(2), 230–244 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  10. Vieira, G.E., Herrmann, J.W., Lin, E.: Rescheduling manufacturing systems: a framework of strategies, policies, and methods. J. Sched. 6(1), 39–62 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  11. Lucht, T., Mütze, A., Kämpfer, T., Nyhuis, P.: Model-based approach for assessing planning quality in production logistics. IEEE Access, 1 (2021)

    Google Scholar 

  12. Büttner, K., Antons, O., Arlinghaus, J.C.: Applied machine learning for production planning and control: overview and potentials. IFAC-PapersOnLine 55(10), 2629–2634 (2022)

    Article  Google Scholar 

  13. Kuo, Y.-H., Kusiak, A.: From data to big data in production research: the past and future trends. Int. J. Prod. Res. 57(15–16), 4828–4853 (2019)

    Article  Google Scholar 

  14. Soepenberg, G.D., Land, M., Gaalman, G.: The order progress diagram: a supportive tool for diagnosing delivery reliability performance in make-to-order companies. Int. J. Prod. Econ. 112(1), 495–503 (2008)

    Article  Google Scholar 

  15. Schilp, J.: PPS-Report 2021 – Studienergebnisse (2021)

    Google Scholar 

  16. Heinrich, J., Weiskopf, D.: State of the Art of Parallel Coordinates, 22 p. (2012)

    Google Scholar 

  17. Kempf, K., Uzsoy, R., Smith, S., Gary, K.: Evaluation and comparison of production schedules. Comput. Ind. 42(2–3), 203–220 (2000)

    Article  Google Scholar 

  18. Conway, R.W., Maxwell, W.L., Miller, L.W.: Theory of Scheduling, p. 294. Dover, Mineola (2003)

    Google Scholar 

  19. Hiller, T., Deipenwisch, L., Nyhuis, P.: Systemising data-driven methods for predicting throughput time within production planning & control. In: 2022 IEEE International Conference on Industrial Engineering and Engineering Management (IEEM), Kuala Lumpur, Malaysia, 07 December 2022–10 December 2022, pp. 716–721. IEEE (2022)

    Google Scholar 

  20. Bertsch, S., Felix, C., Nyhuis, P.: Modeling the sequence dependent lateness of a single workstation. AMR 1140, 443–448 (2016)

    Article  Google Scholar 

  21. Wiendahl, H.-P., Wiendahl, H.-H.: Betriebsorganisation für Ingenieure, 9., vollständig überarbeitete Auflage ed. Hanser, München (2019)

    Google Scholar 

  22. Inselberg, A.: Parallel Coordinates. Springer New York (2009). https://doi.org/10.1007/978-0-387-68628-8

  23. Lucht, T., Kämpfer, T., Nyhuis, P.: Characterization of supply chains in the regeneration of complex capital goods. In: Dimitrov, D., Hagedorn-Hansen, D., von Leipzig, K. (eds.) International Conference on Competitive Manufacturing (COMA 19), 31 January–2 February 2019, Stellenbosch, South Africa. Department of Industrial Engineering, Stellenbosch University, Stellenbosch, pp. 444–449 (2019)

    Google Scholar 

  24. Hoffmann, L.-S., Kuprat, T., Kellenbrink, C., Schmidt, M., Nyhuis, P.: Priority rule-based planning approaches for regeneration processes. Procedia CIRP 59, 89–94 (2017)

    Article  Google Scholar 

  25. Eickemeyer, S.C., Mische, V., Goßmann, D.: Regenerationsplanung mit belastbarem Prognosewert. Zeitschrift für wirtschaftlichen Fabrikbetrieb 110(11), 706–709 (2015)

    Article  Google Scholar 

  26. Reményi, C., Staudacher, S.: Systematic simulation based approach for the identification and implementation of a scheduling rule in the aircraft engine maintenance. Int. J. Prod. Econ. 147(1), 94–107 (2014)

    Article  Google Scholar 

  27. Härtel, L., Nyhuis, P.: Data-Based Identification of Throughput Time Potentials in Production Departments, Hannover (2020)

    Google Scholar 

Download references

Acknowledgment

This project is funded by the German Federal Ministry of Education and Research, as part of the Aviation Research and Technology Program of the Lower Saxony Ministry of Economics, Labor, Transport and Digitalization (funding code ZW 1 - 80157862).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tobias Hiller .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 IFIP International Federation for Information Processing

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hiller, T., Osterkamp, L., Vinke, L., Holtsch, P., Mütze, A., Nyhuis, P. (2023). Simple Analysis of Planning Quality in Production Logistics. In: Alfnes, E., Romsdal, A., Strandhagen, J.O., von Cieminski, G., Romero, D. (eds) Advances in Production Management Systems. Production Management Systems for Responsible Manufacturing, Service, and Logistics Futures. APMS 2023. IFIP Advances in Information and Communication Technology, vol 691. Springer, Cham. https://doi.org/10.1007/978-3-031-43670-3_50

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-43670-3_50

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-43669-7

  • Online ISBN: 978-3-031-43670-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics