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Abstract. Industry 4.0 is providing unprecedented opportunities for the capture 
and use of data into production planning and control (PPC). The accuracy of such 
data for PPC has been found to have a direct positive effect on operational per-
formance. This study builds on a dynamic approach where production feedback 
data is used to improve the accuracy of master data used in tactical planning. The 
study applies a model-based approach using data from a real case. Two illustra-
tive sensitivity analyses indicate that even small deviations in the accuracy of 
master data have an impact on the production schedule in terms of job sequence 
and makespan. The paper's main theoretical contribution is the development of 
six propositions on this relationship, where in short, the sequence appears to be 
sensitive to the accuracy of both changeover time and processing time. The paper 
illustrates how sensitivity analysis can be used in investment decisions about 
which production feedback data to capture and use for PPC purposes. Further 
research should test the propositions in more real cases and other production en-
vironments and carry out sensitivity analyses with more types of master data, 
variables, and combinations. 

Keywords: Smart Production Planning and Control, Flexible Job Shop Sched-
uling, Case. 

1 Introduction 

The emergence of Industry 4.0 and increasing digitalization of operations provide new 
opportunities for production planning and control (PPC). The application of data from 
a more diverse range of sources has made way for more integrated, dynamic and real-
time PPC, aptly labelled smart PPC [1-3]. A consequence of the growing application of 
digital technologies in production is a large increase in both the quantity and quality of 
data captured on the shopfloor [4]. Examples include data about the current statuses of 
active production jobs, utilized resources, and set-up and processing durations for pro-
cess steps [5]. This operational data is typically used for control and monitoring of pro-
duction in order to update short-term production plans, handle unexpected events, and 
monitor resource efficiency and production job statuses [6]. Further, the accuracy of 
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such data for PPC has been found to have a direct positive effect on operational perfor-
mance [7]. 

There is now a growing body of research on the use of this type of production feed-
back data for PPC, see for instance Oluyisola [8] , Schuh, Thomas [5], Schuh, Reuter 
[9], Reuter and Brambring [6], and Schäfers, Mütze [4]. These studies have mainly 
investigated the use of production feedback data on a conceptual level or for control 
purposes, while literature on its usefulness for tactical planning and scheduling is still 
scarce. A recent contribution on the topic is the conceptual model for application of 
production feedback data into tactical planning to improve planning quality [10]. The 
concept proposes the use of production feedback data to verify or dynamically deter-
mine master data used in tactical planning, such as processing times, changeover times 
and scrap rates. The next step is to test the concept in a real-life case.  

The purpose of this paper is therefore to use data from a real case to investigate the 
impacts of accuracy of master data for planning on a production schedule. In particular, 
the study addresses the following research question: how can the accuracy of produc-
tion feedback data affect the sequencing of jobs in a flexible job shop production envi-
ronment? 

To answer the research question, the study applies a model-based approach and sen-
sitivity analysis using data from a medium-sized Norwegian food producer. In order to 
reduce the complexity of the scheduling problem, two types of master data were in-
cluded in the optimization model: changeover time and processing time. Two sensitiv-
ity analyses investigate the impact of the accuracy of these two types of master data on 
the production schedule with regards to job sequence and makespan.  

The paper's main theoretical contribution is the development of a set of propositions 
on the effects of the accuracy of changeover time and processing time on a production 
schedule. Additionally, some insights are provided for practitioners that can assist them 
in identifying the most beneficial production feedback data to capture and use for PPC 
purposes. The paper does not aim to develop new algorithms for scheduling but rather 
applies an existing mixed-integer linear programming (MILP) model and uses this as a 
tool for sensitivity analyses. 

The study's scope is limited to the context of the case study. The production is make-
to-stock (MTS) mainly based on forecasts, where production of standard products is 
organized in batches in a four-stage, flexible job shop environment with fixed routings.  

In the next section, the theoretical background of the study is outlined. Section 3 
describes the study's methodology and section 4 introduces the case. The model and 
results of the sensitivity analyses are presented in sections 5 and 6, before the conclu-
sions and directions for further research are outlined in section 7.  

2 Theoretical Background 

2.1 Production Planning and Control (PPC) 

PPC can be understood as the activities of loading, scheduling, sequencing, monitoring, 
and controlling the use of resources and materials during production [11]. Loading in-
volves determining the amount of work to be done, while scheduling deals with 
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determining the appropriate timing of tasks [11]. Sequencing is concerned with estab-
lishing the order in which tasks are to be performed. Monitoring and control focus on 
ensuring that tasks proceed as planned and taking corrective actions when necessary to 
maintain adherence to the plan [11]. Thus, PPC makes decisions about which products 
to produce in which quantities at which times to meet customers' demands [1].  

The strategic planning level provides a broad and aggregated view of production 
operations in the long term, formulated in a master production schedule (MPS) [2]. This 
is then analyzed through rough-cut capacity planning to discover potential capacity 
problems and critical resources [12]. In the tactical level, the materials requirement 
planning (MRP) process combines the MPS with bill of materials (BOM) and inventory 
data to determine what to order, in which quantities, and at what time [2]. Based on the 
calculation of net requirements, production and purchase orders are generated. In addi-
tion, before the MRP is executed, capacity requirements planning (CRP) is performed 
to check that the required capacity is available. The operational level deals with the 
short-term planning, where the plan from the tactical level is scheduled and executed. 
This level is also concerned with monitoring of operations, dispatching, expediting, 
inspecting, evaluating, and taking corrective actions [11]. 

Most organizations worldwide have adopted enterprise resource planning (ERP) sys-
tems to integrate their processes and functions [13-15]. An ERP system supports a range 
of business functions such as production, procurement, material management, sales, 
and logistics [13, 15] and provides companies with an integrated database of transac-
tions, business records and master data [16]. The quality of the planning processes, 
particularly on the tactical level, is highly dependent on the accuracy of the master data 
used in planning [17]. Master data identify and describe all the important business ob-
jects, e.g., business partners, employees, articles, BOM, lead-times, resources, and ac-
counts. Typically, master data are created once, used many times and not frequently 
updated [17, 18], such that the master data used for e.g. MRP or scheduling might not 
accurately reflect the current state of the shopfloor [19]. This lack of accuracy in plan-
ning data can lead to discrepancies between a plan and its execution on the shopfloor. 

Today, practically every production system is to a certain extent planned and con-
trolled by ERP. However, many of the PPC decisions still rely on experts' experience 
[20], and they are often performed with the support of spreadsheet solutions [21]. 

2.2 Scheduling 

Scheduling is the process that links the tactical and operational levels of PPC by allo-
cating resources to perform a group of jobs over a period of time [22]. A schedule can 
therefore be considered as a list of starting times and machine assignments for each 
operation of each planned job [23]. Determining the best schedule might be simple or 
very complicated depending on the production environment, the process limitations, 
and the performance indicators [24].  

Since the 1950s, the job shop scheduling problem (JSP) has been recognized as a 
challenging combinatorial optimization problem [25]. The JSP aims to generate a 
schedule of jobs in a multi-machine setting with predetermined operation sequences 
[26]. The extensive use of multi-purpose machines in real-world manufacturing 
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systems has made it increasingly common for an operation to be controlled by multiple 
machines – a problem known as the flexible job shop scheduling problem (FJSP) [27]. 
FJSP, as an extension of JSP, was introduced by Brucker and Schlie [28] and is cate-
gorized into sequencing and routing subproblems [25].  

The FJSP problem has received a lot of attention and has been well-studied in the 
last three decades (see e.g., [25, 29] for an overview). For instance, Framinan, 
Fernandez-Viagas [30] showed that rescheduling improves the performance of the 
shopfloor with low to medium variability in processing times, and that investments in 
capturing real-time data at the scheduling level could be worthwhile. Further, 
Fernandez-Viagas and Framinan [31] demonstrated that the advantages of using real-
time, integrated data rely extensively on the appropriate selection of both the scheduling 
approach and the solution approach.  

2.3 Smart PPC 

Industry 4.0 technologies have led to the creation of enormous amounts of data and 
have the potential to revolutionize production operations [32]. Smart PPC is an emerg-
ing topic within PPC that incorporates such technologies and their capabilities into PPC 
by enabling real-time, data-driven decision-making and continuous learning with inputs 
from a more diverse range of data sources [2]. Smart PPC can enable flexible and re-
sponsive planning, scheduling, and control by tracking, gathering, evaluating, and man-
aging data from internal and external sources [20].  

A promising avenue for smart PPC is the exploitation of the access to data from the 
shopfloor into planning processes. In addition to increasing the accuracy, timeliness, 
and completeness of data used in planning, the access to such production feedback data 
can help to overcome some of the limitations of the hierarchical approach to PPC by 
providing feedback loops from lower planning levels into higher planning levels [2].  

Due to the static nature of master data, the current state of the shopfloor is often not 
reflected in tactical planning [19], leading to potentially large deviations between the 
production plan and the actual execution on the shopfloor. In an attempt to overcome 
such weaknesses, Rahmani, Syversen [10] proposed a concept for the application of 
production feedback data in tactical planning to improve planning quality (see Fig. 1). 
This more dynamic approach to master data can both increase planning data accuracy 
and help to overcome some of the limitations of the hierarchical approach to PPC by 
feeding data about the situation on the shopfloor into higher planning levels. The con-
cept further outlines how production feedback data can be used for two purposes in 
MRP: 1) to verify static master data, and 2) to determine dynamic master data. The 
concept remains to be applied in real-life cases.  
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Fig. 1. Conceptual model for application of production feedback data into MRP [10]. 

2.4 Research Opportunities 

The overview of the theoretical background for this study highlights some key chal-
lenges and interesting opportunities for research on production scheduling using pro-
duction feedback data. Firstly, Industry 4.0 is providing unprecedented opportunities 
for the capture and use of data into PPC. Much of the literature has focused on the use 
of this for the operational planning level and less has been done on how production 
feedback data can be applied in scheduling as a link between tactical and operational 
PPC. Secondly, literature shows that tactical planning should not be based solely on 
static master data but also use production feedback data to dynamically determine mas-
ter data that is variable. Thirdly, studies indicate that scheduling can be improved with 
the application of model-based approaches and use of more accurate and real-time data 
from the shopfloor. However, there is a need for more research to better understand the 
effects of the accuracy of master data for planning on the production schedule. 

3 Methodology 

In order to address the research opportunities identified in section 2.4, this study uses 
an illustrative case study of a Norwegian food producer. The company was selected 
because of their interest in the potential of using production feedback data for PPC 
purposes and the researchers' in-depth knowledge of the company's processes and PPC. 
The company’s nuts production was selected as the main focus for the study because 
of the data capture infrastructure already established on the nuts processing and packing 
machines. The main data collection for the study took place between August 2022 and 
April 2023. Qualitative data on products, production processes, material flows, and 
PPC processes was collected through observations and two site visits, several physical 
and online meetings, and formal interviews with two production planners, the supply 
chain manager, and the project manager. The case descriptions were validated by the 
nuts production planner. The qualitative data was jointly analyzed by the involved 
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researchers to identify challenges and opportunities for PPC in the case. Quantitative 
data such as production plans, sales, forecast accuracy, and overall equipment effi-
ciency (OEE) was extracted from the company's ERP and business intelligence systems 
and analyzed by the researchers. For the study, the company's current Excel-based 
scheduling procedure was implemented into a mathematical scheduling model. The 
model was validated manually using a simple example before it was used in the sensi-
tivity analyses. Scenarios for the sensitivity analyses were run using realistic parame-
ters for the nuts production. The results from the analysis were jointly analyzed by the 
researchers to develop a set of propositions. 

4 Case Description 

4.1 Introduction to the Company and its Production 

Brynild AS is a medium-sized, family-owned producer of snacks, sugar confectionery, 
and chocolate products. The company has approx. 230 employees and an annual reve-
nue of EUR 90 mill. The company's main customers are the three Norwegian grocery 
wholesaler–retailer dyads that control 100 % of the retail market, with wholesalers typ-
ically requiring a 98 % service level and two to three days delivery lead time. Consumer 
demand for the company’s products is highly seasonal and affected by a high frequency 
of promotional activities and new product launches. The company's factory in Norway 
produces approx. 80 variants of nuts, 40 variants of sugar confectionery products, and 
50 chocolate variants. The products have a shelf-life of 5-24 months. 

For nuts, there are 200 different inputs (raw materials and packaging materials), 
which are processed and packed into 80 variants of finished goods. The nut production 
is organized into four main integrated process stages: separating, cooking, mixing, and 
packing (see Fig. 2). Processing starts with separating, before cooking using either a 
dry roasting or frying machine. The cooking machines can be run in parallel, and based 
on the type of job, one of them is selected. After cooking, intermediates are either sent 
to mixing (where they are mixed with other intermediates) or directly to packing. After 
processing is complete, the finished intermediates are packed. There are five unrelated 
parallel machines in the packing stage, where each machine has specific capabilities 
regarding capacities and packaging types. There are no buffer inventory points between 
the processes, and all processed intermediates should be packed in the same day, alt-
hough an intermediate can be stored for up to four days before packing.  
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Fig. 2. Nuts production processes, stock points and material flow. 

Brynild has a sensory system that captures real-time data from the nuts packing ma-
chines. Several types of data are captured in real-time, such as the start and finish time 
of batches, batch size in kilograms, amount of waste, stop times, and break times. The 
data is stored in the manufacturing execution system (MES). Parts of this data is cur-
rently used for calculation of OEE and as a basis for improvement efforts to identify 
breakdowns and other issues that reduce the capacity of the packing machines. 

4.2 Production Planning and Control (PPC) in Brynild 

PPC of nuts in Brynild. Brynild's production is primarily MTS for standard products, 
with some elements of make-to-order (MTO) for promotional campaigns. A production 
planner generates a weekly production plan for nuts based on a 26-week demand fore-
cast extracted from the ERP system. The planner then calculates net requirements in 
Excel spreadsheets. Here, the weekly forecast is manually adjusted with finished goods 
inventory levels, required safety stocks, scheduled receipts, new product launches, 
planned campaigns, and seasonal demand.  

After a rough-cut capacity check, the planner finalizes the weekly production plan 
for each product for the coming 10 weeks. Next, the planner manually determines the 
production schedule for the coming week, specifying sequences and volumes per prod-
uct per shift per day. The planner starts by scheduling jobs on the packing machine 
because this has the lowest capacity. The resulting sequence is then applied in all the 
preceding stages. The schedule for the week is then printed and distributed manually to 
the shopfloor. Daily shift reports are sent back to the factory systems digitally.  

In the scheduling, the processing time per intermediate is based on the planner's ex-
perience of the capacity of each machine per intermediate per shift. The planner uses 
rules of thumb for the sequencing of jobs based on the type of intermediates to be pro-
duced. The objective is to minimize changeover time, so for instance non-salted inter-
mediates are produced before salted intermediates because this requires less changeo-
ver time. The most time-consuming changeover activity is cleaning (washing and dry-
ing) of machines, and the duration varies with the type of intermediate. Generally, only 
one type of intermediate is produced in each shift and cleaning takes place between 
shifts. When the same intermediate is produced in consecutive shifts, the machines do 
not need to be cleaned for three to four days. Before another intermediate is produced, 
four hours of cleaning time is typically required.  

Challenges and Opportunities for PPC. Brynild's current PPC process is experi-
ence-based, with several manual tasks and application of informal rules of thumb. The 
master data currently used for planning is not systematically updated or verified, thus 
there is uncertainty about the accuracy of some of the input data used for planning and 
potential discrepancies between the issued production schedules and the execution of 
these on the shopfloor. Further, given that the planner is responsible for planning ap-
prox. 80 variants of finished goods in a flexible job shop environment, the scheduling 
problem is fairly complex. Thus, a model-based approach could be useful to generate 
higher performing schedules. The company already has an IT infrastructure for 
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capturing real-time data on machines and has found useful ways to use this to improve 
OEE. However, the captured data could potentially also be used for PPC purposes. 
Thus, the company is a suitable case for investigating how production feedback data 
can be used to improve data accuracy and planning quality through model-based sched-
uling.  

5 Scheduling Model 

In order to investigate how the accuracy of production feedback data affect the sequenc-
ing of jobs in a flexible job shop production environment, a model-based approach was 
used. The main assumptions from the company's current scheduling procedure were 
implemented into a mathematical scheduling model. The model by Shen, Dauzère-
Pérès [33] was used because it considers the assumption of sequence-dependent 
changeover times. Since all machines in the case are not capable of processing all op-
erations for each job, a binary parameter was added to the model to guarantee that each 
operation of a job is assigned to an eligible machine. The objective of the applied model 
is to schedule a number of jobs on a set of machines to minimize the maximum com-
pletion time, i.e., the makespan (𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚). The model generates the initial sequence of 
jobs or schedules for the case. 

The parameters, assumptions and decision variables of the scheduling model are for-
mulated as follows. A set J of n jobs, where each has its own processing order, shall be 
processed on a set M of m machines. There are a number of 𝑛𝑛𝑖𝑖 consecutive operations 
that have to be performed to complete the job i on any machine among a subset 𝑀𝑀𝑖𝑖𝑖𝑖 ⊆
𝑀𝑀of eligible machines. Let denote 𝑂𝑂𝑖𝑖𝑖𝑖  as the j-th operation of job i, and 𝑝𝑝𝑖𝑖𝑖𝑖𝑖𝑖 be the pro-
cessing time of operation 𝑂𝑂𝑖𝑖𝑖𝑖  on machine k. Changeover time is not negligible and de-
pends on the sequences of the jobs. Changeover  𝑠𝑠𝑖𝑖𝑖𝑖′𝑘𝑘 occurs when operations of jobs i 
and 𝑖𝑖′ are processed successively on machine k.  All jobs and machines are available at 
time zero, and each machine can only execute one operation at a given time. Unlimited 
buffer capacity is considered between the machines. Preemption is not allowed, and 
transportation times are not considered in the model. Since each operation can be pro-
cessed on one eligible machine, 𝑢𝑢𝑖𝑖𝑖𝑖𝑖𝑖 and 𝛼𝛼𝑖𝑖𝑖𝑖𝑖𝑖 are defined as a binary parameter and a 
binary variable, respectively. 𝑢𝑢𝑖𝑖𝑖𝑖𝑖𝑖is equal to 1 if machine k is capable to process oper-
ation 𝑂𝑂𝑖𝑖𝑖𝑖 and 𝛼𝛼𝑖𝑖𝑖𝑖𝑖𝑖 is equal to 1 if operation 𝑂𝑂𝑖𝑖𝑖𝑖  is assigned to machine k. To model the 
problem, the following decision variables are required; 𝑡𝑡𝑖𝑖𝑖𝑖 as the starting time of oper-
ation 𝑂𝑂𝑖𝑖𝑖𝑖,  𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚 as the makespan, and 𝛽𝛽𝑖𝑖𝑖𝑖𝑖𝑖′𝑗𝑗′  as a binary variable. It gets value 1 if op-
eration 𝑂𝑂𝑖𝑖𝑖𝑖  is scheduled before operation 𝑂𝑂𝑖𝑖′𝑗𝑗′ .  

According to the assumptions and notations mentioned above, the mathematical 
model is formulated as follows. 

Minimization 𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚                                                                                                        

S.t. 

∑ 𝑢𝑢𝑖𝑖𝑖𝑖𝑖𝑖𝑘𝑘∈𝑀𝑀𝑖𝑖𝑖𝑖 ∗ 𝛼𝛼𝑖𝑖𝑖𝑖𝑖𝑖=1                                                 ∀𝑖𝑖 ∈ 𝐽𝐽, 𝑗𝑗 ∈ 1, … ,𝑛𝑛𝑖𝑖 (1) 
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𝑡𝑡𝑖𝑖𝑖𝑖 = 𝑡𝑡𝑖𝑖(𝑗𝑗−1) + ∑ 𝑝𝑝𝑖𝑖(𝑗𝑗−1)𝑘𝑘 ∗ 𝛼𝛼𝑖𝑖(𝑗𝑗−1)𝑘𝑘𝑘𝑘∈𝑀𝑀𝑖𝑖(𝑗𝑗−1)             ∀𝑖𝑖 ∈ 𝐽𝐽, 𝑗𝑗 ∈ 2, … ,𝑛𝑛𝑖𝑖                     (2) 

 𝑡𝑡𝑖𝑖𝑖𝑖  ≥ 𝑡𝑡𝑖𝑖′𝑗𝑗′ + 𝑝𝑝𝑖𝑖′𝑗𝑗′𝑘𝑘 + 𝑠𝑠𝑖𝑖′𝑖𝑖𝑖𝑖 − �2 − 𝛼𝛼𝑖𝑖𝑖𝑖𝑖𝑖 − 𝛼𝛼𝑖𝑖′𝑗𝑗′𝑘𝑘 + 𝛽𝛽𝑖𝑖𝑖𝑖𝑖𝑖′𝑗𝑗′� ∗ 𝐻𝐻     ∀(𝑖𝑖, 𝑖𝑖′) ∈ 𝐽𝐽 × 𝐽𝐽,∀ 𝑗𝑗 =
1, … ,𝑛𝑛𝑖𝑖, 𝑗𝑗′ = 1, … ,𝑛𝑛𝑖𝑖′ , s.t. 𝑂𝑂𝑖𝑖𝑖𝑖 ≠ 𝑂𝑂𝑖𝑖′𝑗𝑗′  , 𝑘𝑘 ∈ 𝑀𝑀𝑖𝑖𝑖𝑖 ∩ 𝑀𝑀𝑖𝑖′𝑗𝑗′                               (3) 

𝑡𝑡𝑖𝑖′𝑗𝑗′  ≥ 𝑡𝑡𝑖𝑖𝑖𝑖+𝑝𝑝𝑖𝑖𝑖𝑖𝑖𝑖+𝑠𝑠𝑖𝑖𝑖𝑖′𝑘𝑘 − �3 − 𝛼𝛼𝑖𝑖𝑖𝑖𝑖𝑖 − 𝛼𝛼𝑖𝑖′𝑗𝑗′𝑘𝑘 − 𝛽𝛽𝑖𝑖𝑖𝑖𝑖𝑖′𝑗𝑗′� ∗ 𝐻𝐻           ∀(𝑖𝑖, 𝑖𝑖′) ∈ 𝐽𝐽 × 𝐽𝐽,∀ 𝑗𝑗 =
1, … ,𝑛𝑛𝑖𝑖, 𝑗𝑗′ = 1, … ,𝑛𝑛𝑖𝑖′ , s.t. 𝑂𝑂𝑖𝑖𝑖𝑖 ≠ 𝑂𝑂𝑖𝑖′𝑗𝑗′ 𝑘𝑘 ∈ 𝑀𝑀𝑖𝑖𝑖𝑖 ∩ 𝑀𝑀𝑖𝑖′𝑗𝑗′                                                         (4) 

𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚 ≥ 𝑡𝑡𝑖𝑖𝑛𝑛𝑖𝑖 + ∑ 𝑝𝑝𝑖𝑖𝑛𝑛𝑖𝑖𝑘𝑘 ∗ 𝛼𝛼𝑖𝑖𝑛𝑛𝑖𝑖𝑘𝑘𝑘𝑘∈𝑀𝑀𝑖𝑖𝑛𝑛𝑖𝑖
                                 ∀𝑖𝑖 ∈ 𝐽𝐽                                            (5) 

𝑡𝑡𝑖𝑖𝑖𝑖 ≥ 0                                                               ∀𝑖𝑖 ∈ 𝐽𝐽, 𝑗𝑗 ∈ 1, … ,𝑛𝑛𝑖𝑖 (6) 

𝛼𝛼𝑖𝑖𝑖𝑖𝑖𝑖 ∈ {0,1}                                                              ∀𝑖𝑖 ∈ 𝐽𝐽, 𝑗𝑗 ∈ 1, … ,𝑛𝑛𝑖𝑖 , 𝑘𝑘 ∈ 𝑀𝑀𝑖𝑖𝑖𝑖         (7) 

𝛽𝛽𝑖𝑖𝑖𝑖𝑖𝑖′𝑗𝑗′ ∈ {0,1}                                  ∀(𝑖𝑖, 𝑖𝑖′) ∈ 𝐽𝐽 × 𝐽𝐽,∀ 𝑗𝑗 = 1, … ,𝑛𝑛𝑖𝑖 , 𝑗𝑗′ = 1, … ,𝑛𝑛𝑖𝑖′  (8) 

The objective function minimizes the makespan. Constraint (1) ensures that each oper-
ation is assigned to one eligible machine. Constraint (2) presents the precedence rela-
tionships between the operations of a job. Constraints (3) and (4) state the requirement 
that two different operations cannot be done at the same time on machine k. Constraint 
(5) computes the makespan. Constraints (6), (7) and (8) determine the permitted do-
mains of the decision variables. 

6 Sensitivity Analyses 

6.1 Introduction 

Using the model described above, two illustrative sensitivity analyses were performed 
to investigate how changeover and processing time accuracy can affect the sequencing 
of jobs and, consequently, the makespan. To this end, an initial schedule with job se-
quence and makespan was determined by solving the model in section 5 with data and 
assumptions from the company. Then, a number of scenarios were generated and ana-
lyzed in the model, comparing the effects of different levels of data accuracy for 
changeover and processing time. 

Scheduling is done weekly for the coming week. An analysis of historic production 
schedules in the case showed that the average number of jobs per week is five. There-
fore, to generate the initial schedule, five jobs were selected to create a realistic set of 
jobs that can be produced in one week. Out of 76 potential jobs from the historic sched-
ules, the jobs were selected using the following selection criteria: 1) select jobs packed 
on the same packaging machine (to reflect how scheduling is currently done in the 
company), 2) select jobs that are processed on four different machines, with a prede-
fined operation (to include all stages in nuts processing and packing, see Fig. 2), 3) 
select jobs to include a mix of dry roasting and frying (to represent the variety in pro-
cessing steps), 4) select jobs that can be completed in one day, where the overall pro-
cessing time on all machines is less than two shifts (to ensure the schedule is feasible), 
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and 5) all the jobs require a mixing process (to capture differences in changeover time 
between jobs on the mixing machine). 

Next, data was collected for each of the five jobs with regards to changeover and 
processing times. The production planner’s estimation of the processing time for a de-
termined batch size for each job is used in the calculations. In the second processing 
stage, jobs 1 and 3 are assigned to machine 𝑘𝑘2.1 and jobs 2, 4 and 5 to machine 𝑘𝑘2.2. 
The required time to complete job 1 on the first, second, third, and fourth machine is 2, 
4, 3 and 7 hours, respectively. In the same order, respectively 2, 3, 4, and 6 hours are 
required to complete job 2, whereas 1.5, 3.5, 3, and 5 hours respectively are needed to 
complete job 3. Finally, the required processing times to complete job 4 is 2, 3, 3, and 
7 hours respectively, while job 5 needs 1.5, 4, 2.5, and 6.5 hours respectively to be 
completed.  

Sequence-dependent changeover time is considered between jobs that are processed 
successively on each machine. The possible values for changeover time are 0.5, 1, 3.5, 
and 4 hours. No changeover time is needed on the first machine, and there is no change-
over time between job 1 and job 3 on machine 𝑘𝑘2.1. In addition, changeover is required 
only when jobs 4 and 5 are processed before job 2 on machine 𝑘𝑘2.2 

The proposed model is solved using GAMS 40.3.0 and run by CPLEX solver on a 
laptop computer with 2.30 GHz Intel Core i7 processor and 32 GB RAM in 0.09 sec-
onds. The initial sequence is i5-i1-i4-i3-i2, resulting in a makespan of 41.5 hours.  

Two sensitivity analyses are conducted to investigate the effects of accuracy of pro-
cessing time and changeover time on the job sequence and consequently the makespan. 
Detailed explanation of the sensitivity analyses and definition of scenarios are pre-
sented in the following sub-sections. 

6.2 Findings from the first sensitivity analysis 

An initial sensitivity analysis was carried out to generate a general understanding of the 
relationship between the data accuracy and the schedule. The scenarios were generated 
with regards to the accuracy of both changeover time and processing time, expresses as 
the % deviation of these parameters from their initial values.  

Two groups of scenarios were considered, where the values for changeover time and 
processing time were set to the same % accuracy for all the jobs on each machine and 
for all the jobs on all the machines simultaneously. The first group of scenarios inves-
tigated data values below those in the initial schedule, down to a 100 % accuracy as 
this is the lowest theoretical value of the parameter. The second group investigated data 
values higher than those in the initial schedule. Scenarios were generated until the 
makespan reached the maximum number of hours an intermediate can be kept in the 
production line, i.e., 64 hours (4 days x 8 hours per shift x 2 shifts per day). This resulted 
in a total of 433 scenarios.  

The results of the sensitivity analysis on the effects of changeover time and pro-
cessing time accuracy on job sequence and makespan are summarized in Table 1 and 
Table 2 respectively, while the effects on makespan are plotted in Fig. 3. 
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Table 1. Effects of changeover time accuracy of all machines on job sequence and makespan.  

Accuracy Sequence Makespan (hrs) Accuracy Sequence Makespan (hrs) 
0 i5-i1-i4-i3-i2 41.5 0 i5-i1-i4-i3-i2 41.5 
-20 % i3-i1-i5-i4-i2 41.1 20 % i5-i1-i3-i2-i4 42 
-40 % i5-i1-i3-i2-i4 40.7 40 % i5-i1-i3-i2-i4 43 
-60 % i3-i1-i5-i4-i2 40.3 60 % i5-i1-i3-i2-i4 44 
-80 % i3-i1-i5-i2-i4 39.9 80 % i5-i1-i3-i2-i4 45 
-100 % i4-i2-i1-i5-i3 39.5 100 % i5-i1-i3-i2-i4 46 
   200 % i5-i1-i3-i2-i4 51 
   300 % i5-i1-i3-i2-i4 58 
   400 % i1-i5-i4-i3-i2 64 

Table 2. Effects of processing time accuracy of all machines on job sequence and makespan.  

Accuracy Sequence Makespan (hrs) Accuracy Sequence Makespan (hrs) 
0 i5-i1-i4-i3-i2 41.5 0 i5-i1-i4-i3-i2 41.5 
-20% i5-i1-i3-i2-i4 33.8 10 % i5-i1-i3-i2-i4 45.5 
-40% i5-i1-i3-i2-i4 26.6 20 % i3-i1-i5-i4-i2 49.4 
-60% i5-i1-i3-i2-i4 19.4 30 % i5-i1-i2-i4-i3 53.4 
-80% i1-i5-i4-i3-i2 12.8 40 % i5-i4-i3-i1-i2 57.3 
-100% i1-i5- i3-i2-i4 5 50 % i5-i1-i4-i3-i2 61.3 
   55 % i5-i1-i2-i4-i3 63.2 

 

 
Fig. 3. Effects of accuracy of (a) changeover time and (b) processing time on makespan. 

6.3 Findings from the second sensitivity analysis 

The initial sensitivity analysis provided some general indications on the relationship 
between data accuracy and production schedules. To validate these findings, a second 
analysis was performed with more realistic and higher number of scenarios, particularly 
focusing on processing time as this is assumed to be more variable than changeover 
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time in the case. Here, the scenarios investigated values of % accuracy for processing 
time individually for each job and on each machine. The accuracy of the values was 
investigated in both directions and for values up and down to 100 %, in increments of 
5 %. This resulted in 800 scenarios and the results are summarized in Fig. 4.  

The first column in Fig. 4 shows the % accuracy of processing time in 20 % incre-
ments. As in the first analysis, the accuracy represents the % deviation of the parameter 
from its initial value. The initial sequence, i.e., i5-i1-i4-i3-i2, is shown in white. The 
other colors represent nine specific sequences that are different from the initial se-
quence, e.g., pink represents the sequence i5-i1-i3-i2-i4. 

 

 
Fig. 4. Effects of processing time accuracy of each machine on job sequence 

6.4 Propositions 

The sensitivity analyses indicate that inaccuracy in processing time and changeover 
time can lead to changes in the optimal sequence. It was found that almost all changes 
in processing time for one job on a single machine has an impact on the sequence – 
which means that using a fixed sequence is less than optimal in a situation where pro-
cessing times vary or are uncertain. Based on the analysis of the data, the following 
propositions are set forward regarding the relationship between the accuracy of change-
over time and processing time on job sequence and makespan: 

P1: The sequence is very sensitive to the accuracy of changeover time for values 
lower than the initial schedule (0).  

P2: The sequence is not very sensitive to the accuracy of changeover time for 
values higher than the initial schedule (0).  

P3: The makespan is not very sensitive to the accuracy of changeover time, nei-
ther when the processing time is lower, nor higher, than the initial schedule 
(0).  

P4: The sequence is fairly sensitive to the accuracy of processing time for values 
lower than the initial schedule (0).  

P5: The sequence is very sensitive to the accuracy of processing time for values 
higher than the initial schedule (0).  

P6: The makespan is fairly sensitive to the accuracy of processing time both when 
the processing time is lower and higher than the initial schedule (0). 
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7 Conclusion and Directions for Further Research 

This paper investigated the relationship between the accuracy of master data for plan-
ning and the performance of a production schedule. The findings indicate that even 
small deviations in data accuracy have an impact on a production schedule in terms of 
the jobs sequence and makespan. These initial analyses show that the sequence appears 
to be sensitive to the accuracy of both changeover time and processing time. Given that 
the determination of the sequence of jobs is the main decision made by production 
planners during scheduling, the study indicates that any improvements in the accuracy 
of master data used for planning should also be accompanied by a revision of the job 
sequence.  

The study provides some useful insights and recommendations for the case com-
pany. Firstly, the company should start measuring and tracking the performance of their 
production schedules. There is also a potential to use production feedback data to vali-
date or adjust the master data used in planning in general and in scheduling in particular. 
Further, the paper illustrates how sensitivity analysis can be used as a tool to create 
insights that can support strategic decision making, e.g., for investments in infrastruc-
ture for capturing data on the shopfloor. And finally, the company should consider re-
placing their current experience-based scheduling process with a model-based approach 
that can result in more optimal schedules.  

The study has several limitations. Due to the NP-hard characteristic of the FJSP, 
mathematical modeling was found to be a useful initial step to understand the structure 
of the problem. However, it was not possible to reflect all assumptions from the case in 
the mathematical model, and the model was not tested with large amounts of real data 
from the company.  

Further research should test the six propositions with real data from other cases and 
in other production environments. In addition, the sensitivity analyses had a limited 
scope and further research should investigate other parameters and different combina-
tions of data accuracy on different machines, especially situations where the accuracy 
of different machines varies in magnitude and directions. To increase the generalizabil-
ity of findings, the model should also be solved and run with a higher number of jobs – 
in more cases and other production environments. There is also a potential to extend 
the model with different objective functions (such as tardiness) and using heuristic al-
gorithms to solve the model on a large scale. Further research should also address the 
integrated lot-sizing and scheduling problem to consider the effects of other types of 
master data for planning, such as scrap rate, capacity, and batch sizes. 

Acknowledgements. The research presented in this paper was conducted as part of the 
DigiMat project, with financial support from NTNU, the participating companies, and 
the Research Council of Norway. 
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