Skip to main content

The 4SECURail Case Study on Rigorous Standard Interface Specifications

  • Conference paper
  • First Online:
Formal Methods for Industrial Critical Systems (FMICS 2023)

Abstract

In the context of the Shift2Rail open call S2R-OC-IP2-01-2019, one of the two work streams of the 4SECURail project has pursued the objective to corroborate how a clear, rigorous standard interface specification between signaling sub-systems can be designed by applying an approach based on semi-formal and formal methods. The objective is addressed by developing a demonstrator case study of the application of formal methods to the specification of standard interfaces, aimed at illustrating some usable state-of-the-art techniques for rigorous standard interface specification, as well as at supporting a Cost-Benefit Analysis to back this strategy with sound economic arguments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://fmt.isti.cnr.it/umc.

  2. 2.

    https://sparxsystems.com/products/ea/index.html.

  3. 3.

    actually, often it is a graphical representation that is automatically generated from the UMC encoding.

  4. 4.

    https://prob.hhu.de/.

  5. 5.

    https://cadp.inria.fr/.

  6. 6.

    IRR is defined as the discounting rate necessary to obtain NPV=0. The indicator is adimensional and represents the expected return of the investment over the project’s lifetime.

References

  1. Aissat, R., Boralv, A.: X2RAIL-2, Deliverable D5.3 Business Case (2020)

    Google Scholar 

  2. Basile, D., Fantechi, A., Rosadi, I.: Formal analysis of the UNISIG safety application intermediate sub-layer. In: Lluch Lafuente, A., Mavridou, A. (eds.) FMICS 2021. LNCS, vol. 12863, pp. 174–190. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-85248-1_11

    Chapter  Google Scholar 

  3. Belli, D., Mazzanti, F.: A case study in formal analysis of system requirements. In: Masci, P., Bernardeschi, C., Graziani, P., Koddenbrock, M., Palmieri, M. (eds.) SEFM 2022. LNCS, vol. 13765, pp. 164–173. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-26236-4_14

    Chapter  Google Scholar 

  4. Bibi, S., Mazhar, S., Minhas, N.M., Ahmed, I.: Formal methods for commercial applications issues vs. solutions. J. Software Eng. Appl. (2014)

    Google Scholar 

  5. Burroughs, D.: SNCF develops new-generation interlockings with a 1bn Argos partnership (2018). https://www.railjournal.com/signalling/sncf-develops-new-generation-interlockings-with-e1bn-argos-partnership

  6. van Essen, H., et al.: Handbook on the external costs of transport, version 2019 1.1. Delft: European Commission, Directorate-General for Mobility and Transport (2019)

    Google Scholar 

  7. EULYNX. Eulynx Project site (2021). https://eulynx.eu/

  8. Ferrari, A., Fantechi, A., et al.: The metro Rio case study. Sci. Comput. Program. 78(7), 828–842 (2013)

    Article  Google Scholar 

  9. Ferrari, A., Mazzanti, F., Basile, D., ter Beek, M.H., Fantechi, A.: Comparing formal tools for system design: a judgment study. In: Proceedings of the ACM/IEEE 42nd International Conference on Software Engineering, pp. 62–74 (2020)

    Google Scholar 

  10. Fitzgerald, J., Bicarregui, J., Larsen, P.G., Woodcock, J.: Industrial deployment of formal methods: trends and challenges. In: Romanovsky, A., Thomas, M. (eds.) Industrial Deployment of System Engineering Methods, pp. 123–143. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-33170-1_10

    Chapter  Google Scholar 

  11. European Union Agency for Railways. Report on railway safety and interoperability in the EU (2018). https://data.europa.eu/doi/10.2821/205360

  12. Garavel, H., Beek, M.H., Pol, J.: The 2020 expert survey on formal methods. In: ter Beek, M.H., Ničković, D. (eds.) FMICS 2020. LNCS, vol. 12327, pp. 3–69. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58298-2_1

    Chapter  Google Scholar 

  13. Gleirscher, M., Marmsoler, D.: Formal methods in dependable systems engineering: a survey of professionals from Europe and North America. Empir. Softw. Eng. 25(6), 4473–4546 (2020). https://doi.org/10.1007/s10664-020-09836-5

    Article  Google Scholar 

  14. Hall, A.: Realising the benefits of formal methods. In: Lau, K.-K., Banach, R. (eds.) ICFEM 2005. LNCS, vol. 3785, pp. 1–4. Springer, Heidelberg (2005). https://doi.org/10.1007/11576280_1

    Chapter  Google Scholar 

  15. RFI Rete Ferroviaria Italiana. Prospetto Informativo della Rete, updated December 2021, with relevant annex “Gradi di Utilizzo dell’Infrastruttura: infrastruttura a capacità limitata e infrastruttura satura” (2021)

    Google Scholar 

  16. Krasner, J.: How product development organizations can achieve long- term cost savings using model-based systems engineering (MBSE) (2015). https://docplayer.net/18566603-How-product-development-organizations-can-achieve-long-term-cost-savings-using-model-based-systems-engineering-mbse.html

  17. Mazzanti, F., Basile, D.: 4SECURail Deliverable D2.2 “Formal development Demonstrator prototype, 1st Release” (2020). https://www.4securail.eu/Documents.html

  18. Mazzanti, F., et al.: 4SECURail Deliverable D2.1 “Specification of formal development demonstrator” (2020). https://www.4securail.eu/Documents.html

  19. Mazzanti, F., Belli, D.: 4SECURail Deliverable D2.5 “Formal development demonstrator prototype, final release” (2021). https://www.4securail.eu/Documents.html

  20. Mazzanti, F., Belli, D.: Formal modeling and initial analysis of the 4SECURail case study. EPTCS 355, 118–144 (2022). https://doi.org/10.48550/arXiv.2203.10903

  21. Mazzanti, F., Belli, D.: The 4SECURail formal methods demonstrator. In: Collart-Dutilleul, S., Haxthausen, A.E., Lecomte, T. (eds.) RSSRail 2022. LNCS, vol. 13294, pp. 149–165. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-05814-1_11

    Chapter  Google Scholar 

  22. Piattino, A., et al.: 4SECURail Deliverable D2.3 “Case study requirements and specification” (2020). https://www.4securail.eu/pdf/4SR-WP2-D2.3-Case-study-requirements-and-specification-SIRTI-1.0.pdf

  23. Ruiz, A., Gallina, B., de la Vara, J.L., Mazzini, S., Espinoza, H.: Architecture-driven, multi-concern and seamless assurance and certification of cyber-physical systems. In: Skavhaug, A., Guiochet, J., Schoitsch, E., Bitsch, F. (eds.) SAFECOMP 2016. LNCS, vol. 9923, pp. 311–321. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-45480-1_25

    Chapter  Google Scholar 

  24. Shift2rail. 4SECURail (GA 881775) project site. http://www.4securail.eu

  25. UNISIG. FIS for the RBC/RBC Handover - SUBSET-039 (2015)

    Google Scholar 

  26. UNISIG. SUBSET-098 - RBC/RBC Safe Communication Interface (2017)

    Google Scholar 

  27. UNISIG. Subset-037, euroradio fis v3.2.0, December 2015

    Google Scholar 

  28. Vaghi, C.: Table of CBA related bibliografy. https://zenodo.org/record/8174266

  29. Vaghi, C.: 4SECURail Deliverable D2.4: “Specification of Cost-Benefit Analysis and learning curves, Intermediate release” (202). https://www.4securail.eu/Documents.html

  30. Vaghi, C.: 4SECURail Deliverable D2.6: “Specification of Cost-Benefit Analysis and learning curves, Final release” (2021). https://www.4securail.eu/Documents.html

  31. Woodcock, J., Larsen, P.G., Bicarregui, J., Fitzgerald, J.: Formal methods: practice and experience. ACM Comput. Surv. 41(4), 2009 (2009)

    Article  Google Scholar 

Download references

Acknowledgements

This work has been partially funded by the 4SECURail project. The 4SECURail project received funding from the Shift2Rail Joint Undertaking under the European Union’s Horizon 2020 research and innovation programme under grant agreement No 881775 in the context of the open call S2R-OC-IP2-01-2019, part of the “Annual Work Plan and Budget 2019”, of the programme H2020-S2RJU-2019. The content of this paper reflects only the authors’view and the Shift2Rail Joint Undertaking is not responsible for any use that may be made of the included information.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alessandro Fantechi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Belli, D. et al. (2023). The 4SECURail Case Study on Rigorous Standard Interface Specifications. In: Cimatti, A., Titolo, L. (eds) Formal Methods for Industrial Critical Systems. FMICS 2023. Lecture Notes in Computer Science, vol 14290. Springer, Cham. https://doi.org/10.1007/978-3-031-43681-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-43681-9_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-43680-2

  • Online ISBN: 978-3-031-43681-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics