Skip to main content

Refinement of Systems with an Attacker Focus

  • Conference paper
  • First Online:
Formal Methods for Industrial Critical Systems (FMICS 2023)

Abstract

Tools and techniques for assessing the possibilities and impacts of attacks on IT systems are necessary to ensure the IT systems upon which society depends on continue to operate despite targeted attacks. This reality compels the development of intuitive brainstorming formalisms like attack-defense trees. With an attack-defense tree and a suitable system description, one can validate if a system succumbs to or withstands a described attack. Yet having established a secure system, it is still necessary to understand if and how system security may or may not be compromised or improved when the system requires modifications. Our research describes how we develop and implement a modeling methodology to resolve attacker-oriented refinement between systems.

Work partially supported by the Villum Investigator grant S4OS and the FNRS PDF - T013721 project.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    \(\texttt{Resident}\) abbreviated to R, \(\texttt{House}\) abbreviated to H and \(\texttt{Attacker}\) abbreviated to A.

References

  1. Danish defence ministry says its websites hit by cyberattack, December 2022. https://www.reuters.com/world/europe/danish-defence-ministry-says-its-websites-hit-by-cyberattack-2022-12-08/

  2. Airline SAS network hit by hackers, says app was compromised, February 2023. https://www.reuters.com/business/aerospace-defense/airline-sas-suffers-cyber-attack-customer-info-leaked-2023-02-14/

  3. German airport websites hit by suspected cyber attack, February 2023. https://www.reuters.com/technology/websites-several-german-airports-down-focus-news-outlet-2023-02-16/

  4. Alur, R., Dill, D.: Automata for modeling real-time systems. In: Paterson, M.S. (ed.) ICALP 1990. LNCS, vol. 443, pp. 322–335. Springer, Heidelberg (1990). https://doi.org/10.1007/BFb0032042

    Chapter  Google Scholar 

  5. Aslanyan, Z., Nielson, F.: Pareto efficient solutions of attack-defence trees. In: Focardi, R., Myers, A. (eds.) POST 2015. LNCS, vol. 9036, pp. 95–114. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46666-7_6

    Chapter  Google Scholar 

  6. Beaulaton, D., Cristescu, I., Legay, A., Quilbeuf, J.: A modeling language for security threats of IoT systems. In: Howar, F., Barnat, J. (eds.) FMICS 2018. LNCS, vol. 11119, pp. 258–268. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00244-2_17

    Chapter  Google Scholar 

  7. Beaulaton, D.: Security analysis of IoT systems using attack trees. Ph.D. thesis, UNIVERSITE DE VANNES UNIVERSITE BRETAGNE SUD (2019)

    Google Scholar 

  8. David, A., Larsen, K.G., Legay, A., Nyman, U., Wasowski, A.: Timed I/O automata: a complete specification theory for real-time systems. In: HSCC, pp. 91–100 (2010)

    Google Scholar 

  9. David, A., Larsen, K.G., Legay, A., Nyman, U., Wąsowski, A.: ECDAR: an environment for compositional design and analysis of real time systems. In: Bouajjani, A., Chin, W.-N. (eds.) ATVA 2010. LNCS, vol. 6252, pp. 365–370. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15643-4_29

    Chapter  Google Scholar 

  10. Dill, D.L.: Timing assumptions and verification of finite-state concurrent systems. In: Sifakis, J. (ed.) CAV 1989. LNCS, vol. 407, pp. 197–212. Springer, Heidelberg (1990). https://doi.org/10.1007/3-540-52148-8_17

    Chapter  Google Scholar 

  11. Gadyatskaya, O., Hansen, R.R., Larsen, K.G., Legay, A., Olesen, M.C., Poulsen, D.B.: Modelling attack-defense trees using timed automata. In: Fränzle, M., Markey, N. (eds.) FORMATS 2016. LNCS, vol. 9884, pp. 35–50. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-44878-7_3

    Chapter  Google Scholar 

  12. Hansen, R.R., Jensen, P.G., Larsen, K.G., Legay, A., Poulsen, D.B.: Quantitative evaluation of attack defense trees using stochastic timed automata. In: Liu, P., Mauw, S., Stølen, K. (eds.) GraMSec 2017. LNCS, vol. 10744, pp. 75–90. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-74860-3_5

    Chapter  Google Scholar 

  13. Hermanns, H., Krämer, J., Krčál, J., Stoelinga, M.: The value of attack-defence diagrams. In: Piessens, F., Viganò, L. (eds.) POST 2016. LNCS, vol. 9635, pp. 163–185. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49635-0_9

    Chapter  Google Scholar 

  14. Jhawar, R., Kordy, B., Mauw, S., Radomirović, S., Trujillo-Rasua, R.: Attack trees with sequential conjunction. In: Federrath, H., Gollmann, D. (eds.) SEC 2015. IAICT, vol. 455, pp. 339–353. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-18467-8_23

    Chapter  Google Scholar 

  15. Kiviriga, A., Larsen, K.G., Nyman, U.: Randomized refinement checking of timed i/o automata. In: Pang, J., Zhang, L. (eds.) SETTA 2020. LNCS, vol. 12153, pp. 70–88. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-62822-2_5

    Chapter  Google Scholar 

  16. Kordy, B., Kordy, P., Mauw, S., Schweitzer, P.: ADTool: security analysis with attack–defense trees. In: Joshi, K., Siegle, M., Stoelinga, M., D’Argenio, P.R. (eds.) QEST 2013. LNCS, vol. 8054, pp. 173–176. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40196-1_15

    Chapter  Google Scholar 

  17. Kordy, B., Mauw, S., Radomirović, S., Schweitzer, P.: Attack-defense trees. J. Log. Comput. 24(1), 55–87 (2014)

    Article  MathSciNet  Google Scholar 

  18. Guldstrand Larsen, K., Pettersson, P., Yi, W.: UPPAAL in a nutshell. STTT 1(1–2), 134–152 (1997). https://doi.org/10.1007/s100090050010

  19. Larsen, K.G., Legay, A., Mikucionis, M., Poulsen, D.B.: Importance splitting in UPPAAL. In: Margaria, T., Steffen, B. (eds.) ISoLA 2022. LNCS, vol. 13703, pp. 433–447. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-19759-8_26

    Chapter  Google Scholar 

  20. Maynard, P., McLaughlin, K., Sezer, S.: Modelling DUQU 2.0 malware using attack trees with sequential conjunction. In: ICISSPP, pp. 465–472. SciTePress (2016)

    Google Scholar 

  21. Poulsen, D.B.: dannybpoulsen/uppaalad: v0.1, July 2023. https://doi.org/10.5281/zenodo.8196631

  22. Danny Bøgsted Poulsen. dannybpoulsen/uppaalad_rep_package: v0.1, July 2023. https://doi.org/10.5281/zenodo.8196634

  23. Schneier, B.: Attack trees: modeling security threats. Dr. Dobb’s J. (1999)

    Google Scholar 

Download references

Acknowledgement

The authors would like to thank Linda Warnier for proofreading this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Danny Bøgsted Poulsen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Larsen, K.G., Legay, A., Poulsen, D.B. (2023). Refinement of Systems with an Attacker Focus. In: Cimatti, A., Titolo, L. (eds) Formal Methods for Industrial Critical Systems. FMICS 2023. Lecture Notes in Computer Science, vol 14290. Springer, Cham. https://doi.org/10.1007/978-3-031-43681-9_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-43681-9_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-43680-2

  • Online ISBN: 978-3-031-43681-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics