Skip to main content

Abstract

For manufacturing companies to prosper in the long term, they must demonstrate contribution to sustainable development by implementing greener practices using approaches such eco-efficiency and circular economy; i.e., creating social and economic value while minimising the environmental impact of production through efficient, closed-loop circulation of resources. In addition, industrial digitalization presents new opportunities to unlock new ways to measure complex systems’ performance and systematically improve towards circular economy and sustainability. This paper presents the results of a feasibility study aiming to develop a practical toolkit to implement environmental sustainability concepts at factory level. To achieve the project objective, we focused on data handling practices for environmental performance management, including process mapping, data inventory, data quality assessment, and gap analysis to identify existing strengths and define areas of improvement to boost the environmental performance of production systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sterner, T., et al.: Policy design for the anthropocene. Nat. Sustain. 2, 14–21 (2019). https://doi.org/10.1038/s41893-018-0194-x

    Article  Google Scholar 

  2. Steffen, W., et al.: Planetary boundaries: GUIDING human development on a changing planet. Science 347(6223), 1259855 (2015). https://doi.org/10.1126/science.1259855

  3. Clift, R., et al.: The challenges of applying planetary boundaries as a basis for strategic decision-making in companies with global supply chains. Sustain 9 (2017). https://doi.org/10.3390/su9020279

  4. Sarkis, J., Rasheed, A.: Greening the manufacturing function. Bus. Horiz. 38, 17–27 (1995). https://doi.org/10.1016/0007-6813(95)90032-2

    Article  Google Scholar 

  5. Weisz, H., Suh, S., Graedel, T.E.: Industrial ecology: The role of manufactured capital in sustainability. Proc. Natl. Acad. Sci. U. S. A. 112, 6260–6264 (2015). https://doi.org/10.1073/pnas.1506532112

    Article  Google Scholar 

  6. Baumann, H., Cowell, S.J.: An evaluative framework for conceptual and analytical approaches used in environmental management. Greener Manag. Int. 26, 109–122 (1999)

    Google Scholar 

  7. Robèrt, K.-H.: Tools and concepts for sustainable development, how do they relate to a general framework for sustainable development, and to each other? J. Clean. Prod. 8, 243–254 (2000). https://doi.org/10.1016/S0959-6526(00)00011-1

    Article  Google Scholar 

  8. Finnveden, G., Moberg, A.: Environmental systems analysis tools - An overview. J. Clean. Prod. 13, 1165–1173 (2005). https://doi.org/10.1016/j.jclepro.2004.06.004

    Article  Google Scholar 

  9. Syu, F.S., et al.: Usability and Usefulness of circularity indicators for manufacturing performance management. Procedia CIRP 105, 835–840 (2022)

    Google Scholar 

  10. Lunt, P., Ball, P., Levers, A.: Barriers to industrial energy efficiency. Int. J. Energy Sect. Manag. 8, 380–394 (2014). https://doi.org/10.1108/IJESM-05-2013-0008

    Article  Google Scholar 

  11. Vatankhah Barenji, A., Liu, X., Guo, H., Li, Z.: A digital twin-driven approach towards smart manufacturing: reduced energy consumption for a robotic cell. Int. J. Comput. Integr. Manuf. 34, 844–859 (2021). https://doi.org/10.1080/0951192X.2020.1775297

    Article  Google Scholar 

  12. Bärring, M., Johansson, B., Stahre, J.: Digital technologies enabling data of production systems for decision support. Smart Sustain. Manuf. Syst. 4(2), 62−79 (2020).https://doi.org/10.1520/SSMS20190034

  13. Gadaleta, M., Pellicciari, M., Berselli, G.: Optimization of the energy consumption of industrial robots for automatic code generation. Robot. Comput. Integr. Manuf. 57, 452–464 (2019). https://doi.org/10.1016/j.rcim.2018.12.020

    Article  Google Scholar 

  14. Despeisse, M., Bekar, E.T.: Challenges in data life cycle management for sustainable cyber-physical production systems. In: Lalic, B., Majstorovic, V., Marjanovic, U., von Cieminski, G., Romero, D. (eds.) APMS 2020. IAICT, vol. 592, pp. 57–65. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-57997-5_7

    Chapter  Google Scholar 

  15. Levitin, A., Redman, T.: Quality dimensions of a conceptual view. Inf. Process. Manag. 31, 81–88 (1995). https://doi.org/10.1016/0306-4573(95)80008-H

    Article  Google Scholar 

  16. Tao, F., Qi, Q., Liu, A., Kusiak, A.: Data-driven smart manufacturing. J. Manuf. Syst. 48, 157–169 (2018). https://doi.org/10.1016/j.jmsy.2018.01.006

    Article  Google Scholar 

  17. Rüegg, J., et al.: Completing the data life cycle: Using information management in macrosystems ecology research. Front. Ecol. Environ. 12, 24–30 (2014). https://doi.org/10.1890/120375

    Article  Google Scholar 

  18. Yoon, V.Y., Aiken, P., Guimaraes, T.: Managing organizational data resources: quality dimensions. Inf. Resour. Manag. J. 13, 5–13 (2000). https://doi.org/10.4018/irmj.2000070101

    Article  Google Scholar 

  19. Costa, C., Santos, M.Y.: Big data: state-of-the-art concepts, techniques, technologies, modeling approaches and research challenges. IAENG Int. J. Comput. Sci. 44, 285–301 (2017)

    Google Scholar 

  20. Chen, A.J.W., Boudreau, M., Watson, R.T.: Information systems and ecological sustainability. J. Syst. Inf. Technol. 10, 186–201 (2008). https://doi.org/10.1108/13287260810916907

    Article  Google Scholar 

  21. Despeisse, M., Chari, A., González Chávez, C.A., Monteiro, H., Machado, C.G., Johansson, B.: A systematic review of empirical studies on green manufacturing: eight propositions and a research framework for digitalized sustainable manufacturing. Prod. Manuf. Res. 10, 727–759 (2022). https://doi.org/10.1080/21693277.2022.2127428

    Article  Google Scholar 

  22. Despeisse, M.: How environmentally sustainable is the on-going industrial digitalization? global trends and a Swedish perspective. In: Advances in Transdisciplinary Engineering, pp. 316–328 (2022)

    Google Scholar 

  23. Joung, C.B., Carrell, J., Sarkar, P., Feng, S.C.: Categorization of indicators for sustainable manufacturing. Ecol. Indic. 24, 148–157 (2013). https://doi.org/10.1016/j.ecolind.2012.05.030

    Article  Google Scholar 

  24. Acerbi, F., Taisch, M.: A literature review on circular economy adoption in the manufacturing sector. J. Clean. Prod. 273 123086 (2020). https://doi.org/10.1016/j.jclepro.2020.123086

  25. Acerbi, F., Sassanelli, C., Taisch, M.: A conceptual data model promoting data-driven circular manufacturing. Oper. Manag. Res. 15, 838–857 (2022). https://doi.org/10.1007/s12063-022-00271-x

    Article  Google Scholar 

  26. Ellen MacArthur Foundation: Circularity Indicators: An Approach to Measuring Circularity . Methodology (2019)

    Google Scholar 

  27. Walden, J., Steinbrecher, A., Marinkovic, M.: Digital product passports as enabler of the circular economy. Chem.Ing.Tech. 93, 1717–1727 (2021). https://doi.org/10.1002/cite.202100121

    Article  Google Scholar 

  28. Berger, K., Schöggl, J.P., Baumgartner, R.J.: Digital battery passports to enable circular and sustainable value chains: conceptualization and use cases. J. Clean. Prod. 353, 131492 (2022). https://doi.org/10.1016/j.jclepro.2022.131492

  29. Despeisse, M., Ball, P.D., Evans, S., Levers, A.: Industrial ecology at factory level: a prototype methodology. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 226, 1648−1664 (2012). https://doi.org/10.1177/0954405412449937

Download references

Acknowledgements

This work was supported by Swedish innovation agency Vinnova and the strategic innovation programme Produktion2030 under grant no. 2022–02460. The work was carried out within Chalmers’ Area of Advance Production. The support is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mélanie Despeisse .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 IFIP International Federation for Information Processing

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Despeisse, M. et al. (2023). Developing Data Models for Smart Environmental Performance Management in Production. In: Alfnes, E., Romsdal, A., Strandhagen, J.O., von Cieminski, G., Romero, D. (eds) Advances in Production Management Systems. Production Management Systems for Responsible Manufacturing, Service, and Logistics Futures. APMS 2023. IFIP Advances in Information and Communication Technology, vol 692. Springer, Cham. https://doi.org/10.1007/978-3-031-43688-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-43688-8_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-43687-1

  • Online ISBN: 978-3-031-43688-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics