Skip to main content

Abstract

This paper discusses the state of the art in battery production research, focusing on high-importance topics to address industrial needs and sustainability goals in this rapidly growing field. We first present current research around three themes: human-centred production, smart production management, and sustainable manufacturing value chains. For each theme, key subtopics are explored to potentially transform battery value chains and shift to more sustainable production models. Such systemic transformations are supported by technological advances to enable superior manufacturing performance through: skills and competence development, improved production ergonomics and human factors, automation and human-robot collaboration, smart production planning and control, smart maintenance, data-driven solutions for production quality and its impact on battery performance (operational efficiency and durability), circular battery systems supported by service-based business models, more integrated and digitalized value chains, and increased industrial resilience. Each subtopic is discussed to suggest directions for further research to realise the full potential of digitalization for sustainable battery production.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. International Energy Agency (IEA): Improving the sustainability of passenger and freight transport (2023)

    Google Scholar 

  2. Hu, X., et al.: Critical systemic risk sources in global lithium-ion battery supply networks: static and dynamic network perspectives. Renew. Sustain. Energy Rev. 173, 113083 (2023). https://doi.org/10.1016/j.rser.2022.113083

    Article  Google Scholar 

  3. European Commission: Proposal for a regulation on establishing a framework of measures for strengthening Europe’s net-zero technology products manufacturing ecosystem (‘Net Zero Industry Act’) (2023)

    Google Scholar 

  4. ABB: Battery manufacturing. https://new.abb.com/industrial-software/industry-software-best-practices/battery-manufacturing

  5. European Commission, Directorate-General for Research and Innovation, Breque, M., De Nul, L., Petridis, A.: Industry 5.0: towards a sustainable, human-centric and resilient European industry. Publications Office (2021)

    Google Scholar 

  6. Kwade, A., Haselrieder, W., Leithoff, R., Modlinger, A., Dietrich, F., Droeder, K.: Current status and challenges for automotive battery production technologies. Nat. Energy. 3, 290–300 (2018). https://doi.org/10.1038/s41560-018-0130-3

    Article  Google Scholar 

  7. United Nations: World Population Prospects. https://population.un.org/wpp/

  8. World Economic Forum: The Future of Jobs Report 2023 (2023)

    Google Scholar 

  9. Albizu, M., Estensoro, M., Franco, S.: Vocational education and training and knowledge intensive business services: a promising relationship in the digital era. Foresight STI Gov. 16, 65–78 (2022). https://doi.org/10.17323/2500-2597.2022.2.65.78

  10. Braun, G., Järvinen, M., Stahre, J., Hämäläinen, R.: Motivational challenges of engineers participating in an online upskilling program. Eur. Conf. e-Learn. 21, 25–31 (2022). https://doi.org/10.34190/ecel.21.1.594

  11. Malmsköld, L., Örtengren, R., Svensson, L.: Improved quality output through computer-based training: an automotive assembly field study. Hum. Factors Ergon. Manuf. Serv. Ind. 25, 304–318 (2015). https://doi.org/10.1002/hfm.20540

    Article  Google Scholar 

  12. Lämkull, D., Hanson, L., Örtengren, R.: Digital human models’ appearance impact on observers’ ergonomic assessment. SAE Tech. Pap. (2005). https://doi.org/10.4271/2005-01-2722

  13. Berlin, C., Adams, C.: Designing Work Systems to Support Optimal Human Performance. Ubiquity Press, London (2017)

    Google Scholar 

  14. Wollter Bergman, M., Berlin, C., Chafi, M.B., Falck, A.-C., Örtengren, R.: Cognitive ergonomics of assembly work from a job demands–resources perspective: three qualitative case studies. Int. J. Environ. Res. Public Health 18, 12282 (2021). https://doi.org/10.3390/ijerph182312282

    Article  Google Scholar 

  15. Wang, L., Liu, S., Liu, H., Wang, X.V.: Overview of human-robot collaboration in manufacturing. In: Wang, L., Majstorovic, V., Mourtzis, D., Carpanzano, E., Moroni, G., Galantucci, L. (eds.) Proceedings of 5th International Conference on the Industry 4.0 Model for Advanced Manufacturing. LNME, pp. 15–58. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-46212-3_2

  16. Kay, I., Farhad, S., Mahajan, A., Esmaeeli, R., Hashemi, S.R.: Robotic disassembly of electric vehicles’ battery modules for recycling. Energies 15, 4856 (2022). https://doi.org/10.3390/en15134856

    Article  Google Scholar 

  17. Castelvecchi, D.: Electric cars and batteries: how will the world produce enough? Nature 596, 336–339 (2021). https://doi.org/10.1038/d41586-021-02222-1

    Article  Google Scholar 

  18. Zhou, L., Zhang, L., Konz, N.: Computer vision techniques in manufacturing. IEEE Trans. Syst. Man Cybern. Syst. 53, 105–117 (2023). https://doi.org/10.1109/TSMC.2022.3166397

    Article  Google Scholar 

  19. Brådland, H., Choux, M., Cenkeramaddi, L.R.: Point cloud instance segmentation for automatic electric vehicle battery disassembly. In: Sanfilippo, F., Granmo, OC., Yayilgan, S.Y., Bajwa, I.S. (eds.) INTAP 2021. CCIS, vol. 1616, pp. 247–258. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-10525-8_20

  20. Gerbers, R., Wegener, K., Dietrich, F., Dröder, K.: Safe, flexible and productive human-robot-collaboration for disassembly of Lithium-ion batteries. In: Kwade, A., Diekmann, J. (eds.) Recycling of Lithium-Ion Batteries. SPLCEM, pp. 99–126. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-70572-9_6

  21. Xiao, J., Jiang, C., Wang, B.: A review on dynamic recycling of electric vehicle battery: disassembly and Echelon utilization. Batteries 9, 57 (2023). https://doi.org/10.3390/batteries9010057

    Article  Google Scholar 

  22. Bueno, A., Godinho Filho, M., Frank, A.G.: Smart production planning and control in the Industry 4.0 context: a systematic literature review. Comput. Ind. Eng. 149, 106774 (2020). https://doi.org/10.1016/j.cie.2020.106774

  23. Asif, A.A., Singh, R.: Further cost reduction of battery manufacturing. Batteries. 3, 17 (2017). https://doi.org/10.3390/batteries3020017

    Article  Google Scholar 

  24. Lin, P., Li, M., Kong, X., Chen, J., Huang, G.Q., Wang, M.: Synchronisation for smart factory - towards IoT-enabled mechanisms. Int. J. Comput. Integr. Manuf. 31, 624–635 (2018). https://doi.org/10.1080/0951192X.2017.1407445

    Article  Google Scholar 

  25. Thiede, S., Turetskyy, A., Kwade, A., Kara, S., Herrmann, C.: Data mining in battery production chains towards multi-criterial quality prediction. CIRP Ann. 68, 463–466 (2019). https://doi.org/10.1016/j.cirp.2019.04.066

    Article  Google Scholar 

  26. Choi, T.-M., Wallace, S.W., Wang, Y.: Big data analytics in operations management. Prod. Oper. Manag. 27, 1868–1883 (2018). https://doi.org/10.1111/poms.12838

    Article  Google Scholar 

  27. Meyer, G.G., (Hans) Wortmann, J.C., Szirbik, N.B.: Production monitoring and control with intelligent products. Int. J. Prod. Res.49, 1303–1317 (2011). https://doi.org/10.1080/00207543.2010.518742

  28. Westermeier, M., Reinhart, G., Steber, M.: Complexity management for the start-up in Lithium-ion cell production. Proc. CIRP 20, 13–19 (2014). https://doi.org/10.1016/j.procir.2014.05.026

    Article  Google Scholar 

  29. Duffner, F., Mauler, L., Wentker, M., Leker, J., Winter, M.: Large-scale automotive battery cell manufacturing: analyzing strategic and operational effects on manufacturing costs. Int. J. Prod. Econ. 232, 107982 (2021). https://doi.org/10.1016/j.ijpe.2020.107982

    Article  Google Scholar 

  30. Salonen, A., Deleryd, M.: Cost of poor maintenance. J. Qual. Maint. Eng. 17, 63–73 (2011). https://doi.org/10.1108/13552511111116259

    Article  Google Scholar 

  31. Bokrantz, J., Skoogh, A., Berlin, C., Wuest, T., Stahre, J.: Smart Maintenance: a research agenda for industrial maintenance management. Int. J. Prod. Econ. 224, 107547 (2020). https://doi.org/10.1016/j.ijpe.2019.107547

    Article  Google Scholar 

  32. Carnero, M.C.: Selection of diagnostic techniques and instrumentation in a predictive maintenance program. A case study. Decis. Support Syst. 38, 539–555 (2005). https://doi.org/10.1016/j.dss.2003.09.003

    Article  Google Scholar 

  33. Guariente, P., Antoniolli, I., Ferreira, L.P., Pereira, T., Silva, F.J.G.: Implementing autonomous maintenance in an automotive components manufacturer. Proc. Manuf. 13, 1128–1134 (2017). https://doi.org/10.1016/j.promfg.2017.09.174

    Article  Google Scholar 

  34. Tian, J., Wang, Y., Liu, C., Chen, Z.: Consistency evaluation and cluster analysis for Lithium-ion battery pack in electric vehicles. Energy 194, 116944 (2020). https://doi.org/10.1016/j.energy.2020.116944

    Article  Google Scholar 

  35. Hannan, M.A., Hoque, M.M., Hussain, A., Yusof, Y., Ker, P.J.: State-of-the-art and energy management system of Lithium-ion batteries in electric vehicle applications: issues and recommendations. IEEE Access 6, 19362–19378 (2018). https://doi.org/10.1109/ACCESS.2018.2817655

    Article  Google Scholar 

  36. Xing, Y., Ma, E.W.M., Tsui, K.L., Pecht, M.: Battery management systems in electric and hybrid vehicles. Energies 4, 1840–1857 (2011). https://doi.org/10.3390/en4111840

    Article  Google Scholar 

  37. Omariba, Z.B., Zhang, L., Sun, D.: Review of battery cell balancing methodologies for optimizing battery pack performance in electric vehicles. IEEE Access 7, 129335–129352 (2019). https://doi.org/10.1109/ACCESS.2019.2940090

    Article  Google Scholar 

  38. Dutta, A., Mitra, S., Basak, M., Banerjee, T.: A comprehensive review on batteries and supercapacitors: development and challenges since their inception. Energy Storage 5, e339 (2023). https://doi.org/10.1002/est2.339

    Article  Google Scholar 

  39. Wang, Y., et al.: A comprehensive review of battery modeling and state estimation approaches for advanced battery management systems. Renew. Sustain. Energy Rev. 131, 110015 (2020). https://doi.org/10.1016/j.rser.2020.110015

    Article  Google Scholar 

  40. Jin, X.: A review on end-of-life battery management: challenges, modeling, and solution methods. In: Advances in Battery Manufacturing, Service, and Management Systems, pp. 79–98. Wiley, Hoboken, NJ, USA (2016)

    Google Scholar 

  41. Neumann, J., et al.: Recycling of Lithium-ion batteries—Current state of the art, circular economy, and next generation recycling. Adv. Energy Mater. 12, 2102917 (2022). https://doi.org/10.1002/aenm.202102917

    Article  Google Scholar 

  42. Larcher, D., Tarascon, J.-M.: Towards greener and more sustainable batteries for electrical energy storage. Nat. Chem. 7, 19–29 (2015). https://doi.org/10.1038/nchem.2085

    Article  Google Scholar 

  43. Schulz-Mönninghoff, M., Neidhardt, M., Niero, M.: What is the contribution of different business processes to material circularity at company-level? A case study for electric vehicle batteries. J. Clean. Prod. 382, 135232 (2023). https://doi.org/10.1016/j.jclepro.2022.135232

    Article  Google Scholar 

  44. Li, L., Dababneh, F., Zhao, J.: Cost-effective supply chain for electric vehicle battery remanufacturing. Appl. Energy 226, 277–286 (2018). https://doi.org/10.1016/j.apenergy.2018.05.115

    Article  Google Scholar 

  45. Chen, M., et al.: Recycling end-of-life electric vehicle Lithium-ion batteries. Joule 3, 2622–2646 (2019). https://doi.org/10.1016/j.joule.2019.09.014

    Article  Google Scholar 

  46. Vandermerwe, S., Rada, J.: Servitization of business: adding value by adding services. Eur. Manag. J. 6, 314–324 (1988). https://doi.org/10.1016/0263-2373(88)90033-3

    Article  Google Scholar 

  47. Sopha, B.M., Purnamasari, D.M., Ma’mun, S.: Barriers and enablers of circular economy implementation for electric-vehicle batteries: from systematic literature review to conceptual framework. Sustainability 14, 6359 (2022). https://doi.org/10.3390/su14106359

  48. Ahuja, J., Dawson, L., Lee, R.: A circular economy for electric vehicle batteries: driving the change. J. Prop. Plan. Environ. Law 12, 235–250 (2020). https://doi.org/10.1108/JPPEL-02-2020-0011

    Article  Google Scholar 

  49. Ahmad, F., Saad Alam, M., Saad Alsaidan, I., Shariff, S.M.: Battery swapping station for electric vehicles: opportunities and challenges. IET Smart Grid 3, 280–286 (2020). https://doi.org/10.1049/iet-stg.2019.0059

    Article  Google Scholar 

  50. Mak, H.-Y., Rong, Y., Shen, Z.-J.M.: Infrastructure planning for electric vehicles with battery swapping. Manag. Sci. 59, 1557–1575 (2013). https://doi.org/10.1287/mnsc.1120.1672

    Article  Google Scholar 

  51. European Commission, Joint Research Centre, Boon-Brett, L., Lebedeva, N., Di Persio, F.: Lithium ion battery value chain and related opportunities for Europe. Publications Office (2018)

    Google Scholar 

  52. Ko, T., Lee, J., Park, D., Ryu, D.: Supply chain transparency as a signal of ethical production. Manag. Decis. Econ. 44, 1565–1573 (2023). https://doi.org/10.1002/mde.3765

    Article  Google Scholar 

  53. Hastig, G.M., Sodhi, M.S.: Blockchain for supply chain traceability: business requirements and critical success factors. Prod. Oper. Manag. 29, 935–954 (2020). https://doi.org/10.1111/poms.13147

    Article  Google Scholar 

  54. Antônio Rufino Júnior, C., Sanseverino, E.R., Gallo, P., Koch, D., Schweiger, H.-G., Zanin, H.: Blockchain review for battery supply chain monitoring and battery trading. Renew. Sustain. Energy Rev. 157, 112078 (2022). https://doi.org/10.1016/j.rser.2022.112078

  55. Marchese, D., Reynolds, E., Bates, M.E., Morgan, H., Clark, S.S., Linkov, I.: Resilience and sustainability: similarities and differences in environmental management applications. Sci. Total Environ. 613–614, 1275–1283 (2018). https://doi.org/10.1016/j.scitotenv.2017.09.086

    Article  Google Scholar 

  56. Fu, W., Chien, C.-F.: UNISON data-driven intermittent demand forecast framework to empower supply chain resilience and an empirical study in electronics distribution. Comput. Ind. Eng. 135, 940–949 (2019). https://doi.org/10.1016/j.cie.2019.07.002

    Article  Google Scholar 

  57. Berger, K., Schöggl, J.-P., Baumgartner, R.J.: Digital battery passports to enable circular and sustainable value chains: conceptualization and use cases. J. Clean. Prod. 353, 131492 (2022). https://doi.org/10.1016/j.jclepro.2022.131492

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by Västra Götaland Regionen Regionutvecklingsnämnden under grant no. RUN 2022-00294 (PreMAXBATT), by Swedish innovation agency Vinnova and the strategic innovation programme Produktion2030 under grant no. 2022-02467 (MATTER) and 2022-01279 (EWASS). The work was carried out within Chalmers’ Area of Advance Production. The support is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mélanie Despeisse .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 IFIP International Federation for Information Processing

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Despeisse, M. et al. (2023). Battery Production Systems: State of the Art and Future Developments. In: Alfnes, E., Romsdal, A., Strandhagen, J.O., von Cieminski, G., Romero, D. (eds) Advances in Production Management Systems. Production Management Systems for Responsible Manufacturing, Service, and Logistics Futures. APMS 2023. IFIP Advances in Information and Communication Technology, vol 692. Springer, Cham. https://doi.org/10.1007/978-3-031-43688-8_36

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-43688-8_36

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-43687-1

  • Online ISBN: 978-3-031-43688-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics