Skip to main content

Part of the book series: IFIP Advances in Information and Communication Technology ((IFIPAICT,volume 692))

  • 835 Accesses

Abstract

Nowadays the production of traditional building materials continues to be highly energy consuming and polluting. Therefore, the development of sustainable materials that allow the reuse of industrial waste could lead to a faster ecological transition of the construction industry. Among lab-scale developed materials, geopolymers are widely recognized as a future and sustainable alternative to traditional Portland cement, allowing to reuse various wastes from different industrial sectors.

This paper aims to perform an environmental analysis of geopolymers large-scale production based on the use of red mud, a waste product from the aluminum supply chain. Previous studies on red mud-based geopolymers have focused mainly on optimizing the laboratory formulations, without analyzing their real environmental advantage over traditional building materials. Therefore, this study uses the life cycle assessment approach to verify the environmental benefit of the large-scale production for the circular economy. Starting from the literature analysis, a four-steps scale-up procedure was applied to identify a potential industrial production.

Results showed a clear reduction in CO2 emissions compared to the production of conventional Portland cement and highlighted the need to reduce the use of alkaline activators in geopolymers production.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. La Scalia, G., Saeli, M., Adelfio, L., Micale, R.: From lab to industry: scaling up green geopolymeric mortars manufacturing towards circular economy. J. Cleaner Prod. 316, 128164 (2021). https://doi.org/10.1016/j.jclepro.2021.128164

    Article  Google Scholar 

  2. Tayeh, B.A., Al Saffar, D.M., Alyousef, R.: The utilization of recycled aggregate in high performance concrete: a review. J. Mater. Tech. Res. 9(4), 8469–8481 (2020). https://doi.org/10.1016/j.jmrt.2020.05.126

    Article  Google Scholar 

  3. Adelfio, L., Micale, R., La Fata, C.M., La Scalia, G.: Reusing coffee ground waste in manufacture of novel sustainable product. In: Proceedings of the Summer School Francesco Turco, Virtual, online – 10 Semptember 2021 (2021)

    Google Scholar 

  4. Saeli, M., Senff, L., Tobaldi, D.M., Carvalheiras, J., Seabra, M.P., Labrincha, J.A.: Unexplored alternative use of calcareous sludge from the paper-pulp industry in green geopolymer construction materials. Constr. Build. Mater. 246, 118457 (2020)

    Article  Google Scholar 

  5. Saeli, M., Micale, R., Seabra, M.P., Labrincha, J.A., La Scalia, G.: Selection of novel geopolymeric mortars for sustainable construction applications using fuzzy topsis approach. Sustainability 12(15), 5987 (2020). https://doi.org/10.3390/su12155987

    Article  Google Scholar 

  6. Almutairi, A.L., Tayeh, B.A., Adesina, A., Isleem, H.F., Zeyad, A.M.: Potential applications of geopolymer concrete in construction: a review. Case Stud. Constr. Mater. 15, e00733 (2021). https://doi.org/10.1016/j.cscm.2021.e00733

    Article  Google Scholar 

  7. Adelfio, L., La Scalia, G., La Fata, C.M., Giallanza, A.: Life cycle analysis of innovative building materials based on circular coffee ground supply chain. Transp. Res. Procedia 67, 100–108 (2022). https://doi.org/10.1016/j.trpro.2022.12.040

    Article  Google Scholar 

  8. Adelfio, L., Giallanza, A., La Scalia, G., La Fata, C.M., Micale, R.: Life cycle assessment of a new industrial process for sustainable construction materials. Ecol. Ind. 148, 110042 (2023). https://doi.org/10.1016/j.ecolind.2023.110042

    Article  Google Scholar 

  9. Tayeh, B.A., Zeyad, A.M., Agwa, I.S., Amin, M.: Effect of elevated temperatures on mechanical properties of lightweight geopolymer concrete. Case Stud. Constr. Mater. 15, e00673 (2021). https://doi.org/10.1016/j.cscm.2021.e00673

    Article  Google Scholar 

  10. Saeli, M., Senff, L., Tobaldi, D.M., Seabra, M.P., Labrincha, J.A.: Novel biomass fly ash-based geopolymeric mortars using lime slaker grits as aggregate for applications in construction: influence of granulometry and binder/aggregate ratio. Constr. Build. Mater. 227, 116643 (2019). https://doi.org/10.1016/j.conbuildmat.2019.08.024

    Article  Google Scholar 

  11. Uysal, M., Aygörmez, Y., Canpolat, O., Cosgun, T., Kuranlı, Ö.F.: Investigation of using waste marble powder, brick powder, ceramic powder, glass powder, and rice husk ash as eco-friendly aggregate in sustainable red mud-metakaolin based geopolymer composites. Constr. Build. Mater. 361, 129718 (2022)

    Article  Google Scholar 

  12. Oluwafemi, J., Ofuyatan, O., Adedeji, A., Bankole, D., Justin, L.: Reliability assessment of ground granulated blast furnace slag/cow bone ash- based geopolymer concrete. J. Build. Eng. 64, 105620 (2023). https://doi.org/10.1016/j.jobe.2022.105620

    Article  Google Scholar 

  13. Zhang, Q., et al.: Co-benefits analysis of industrial symbiosis in China’s key industries: case of steel, cement, and power industries. J. Ind. Ecol. 26, 1714–1727 (2022)

    Article  Google Scholar 

  14. Mi, H., Yi, L., Wu, Q., Xia, J., Zhang, B.: A review of comprehensive utilization of red mud. Waste Manage. Res. 40(11), 1594–1607 (2022)

    Article  Google Scholar 

  15. Khairul, M.A., Behdad, J., Moghtaderi, Z.: The composition, recycling and utilisation of Bayer red mud. Resour. Conserv. Recycl. 141, 483–498 (2019)

    Article  Google Scholar 

  16. Zhang, T.-A., Wang, Y., Lu, G., Liu, Y., Zhang, W., Zhao, Q.: Comprehensive utilization of red mud: current research status and a possible way forward for non-hazardous treatment. TMS Annual Meeting & Exhibition, pp. 135–141. Springer (2018)

    Google Scholar 

  17. Souza, M.T., Simão, L., Montedo, O.R.K., Pereira, F.R., de Oliveira, A.P.N.: Aluminum anodizing waste and its uses: an overview of potential applications and market opportunities. Waste Manage. 84, 286–301 (2019). https://doi.org/10.1016/j.wasman.2018.12.003

    Article  Google Scholar 

  18. Liu, J., Yan, Y., Li, Z., Yang, F., Hai, R., Yuan, M.: Investigation on the potassium magnesium phosphate cement modified by pretreated red mud: basic properties, water resistance and hydration heat. Construction and Building Materials 368 (2023)

    Google Scholar 

  19. Wang, C.-q, Chen, S., Huang, D.-m, Huang, Q.-c, Li, X.-q, Shui, Z.-h: Safe environmentally friendly reuse of red mud modified phosphogypsum composite cementitious material. Constr. Build. Mater. 368, 130348 (2023)

    Article  Google Scholar 

  20. Qian, L.-P., Ahmad, M.R., Lao, J.-C., Dai, J.-G.: Recycling of red mud and flue gas residues in geopolymer aggregates (GPA) for sustainable concrete. Resour., Conserv. Recycl. 191, 106893 (2023)

    Article  Google Scholar 

  21. Kim, Y., Lee, Y., Kim, M., Park, H.: Preparation of high porosity bricks by utilizing red mud and mine tailing. J. Clean. Prod. 207, 490–497 (2019)

    Article  Google Scholar 

  22. Atan, E., Sutcu, M., Cam, A.S.: Combined effects of bayer process bauxite waste (red mud) and agricultural waste on technological properties of fired clay bricks. J. Build. Eng. 43, 103194 (2021)

    Article  Google Scholar 

  23. Wang, Q., et al.: Preparation of lightweight high-strength thermal insulation and decoration integration porous ceramics using red mud. J. Aust. Ceram. Soc. 56, 91–98 (2020)

    Article  Google Scholar 

  24. Carvalheiras, J., Novais, R.M., Labrincha, J.A.: Metakaolin/red mud-derived geopolymer monoliths: novel bulk-type sorbents for lead removal from wastewaters. Appl. Clay Sci. 232, 106770 (2023)

    Article  Google Scholar 

  25. Singh, S., Basavanagowda, S., Aswath, M., Ranganath, R.: Durability of bricks coated with red mud based geopolymer paste. In: IOP Conf. Ser.: Mater. Sci. Eng., p. 012070. IOP Publishing (2016)

    Google Scholar 

  26. Hu, W., et al.: Mechanical property and microstructure characteristics of geopolymer stabilized aggregate base. Constr. Build. Mater. 191, 1120–1127 (2018)

    Article  Google Scholar 

  27. Afolabi, L.O., Ariff, Z.M., Megat-Yusoff, P.S.M., Al-Kayiem, H.H., Arogundade, A.I., Afolabi-Owolabi, O.T.: Red-mud geopolymer composite encapsulated phase change material for thermal comfort in built-sector. Sol. Energy 181, 464–474 (2019)

    Article  Google Scholar 

  28. Arvidsson, R., et al.: Environmental assessment of emerging technologies: recommendations for prospective LCA. J. Ind. Ecol. 22(6), 1286–1294 (2017)

    Article  Google Scholar 

  29. Cucurachi, S., van der Giesen, C., Guinée, J.: Ex-ante LCA of emerging technologies. Procedia CIRP 69, 463–468 (2018)

    Article  Google Scholar 

  30. Röder, H., Kumar, K., Füchsl, S., Sieber, V.: Ex-ante life cycle assessment and scale up: a protein production case study. J. Cleaner Prod. 376, 134329 (2022)

    Article  Google Scholar 

  31. Piccinno, F., Hischier, R., Seeger, S., Som, C.: From laboratory to industrial scale: a scale-up framework for chemical processes in life cycle assessment studies. J. Clean. Prod. 135, 1085–1097 (2016)

    Article  Google Scholar 

  32. Ai, T., Zhong, D., Zhang, Y., Zong, J., Yan, X., Niu, Y.: The effect of red mud content on the compressive strength of geopolymers under different curing systems. Buildings 11(7), 298 (2021)

    Article  Google Scholar 

  33. Bai, B., Bai, F., Nie, Q., Jia, X.: A high-strength red mud–fly ash geopolymer and the implications of curing temperature. Powder Technol. 416, 118242 (2023)

    Article  Google Scholar 

  34. Hu, Y., et al.: Role of Fe species in geopolymer synthesized from alkali-thermal pretreated Fe-rich Bayer red mud. Constr. Build. Mater. 200, 398–407 (2019)

    Article  Google Scholar 

  35. Chen, K., Lin, W.-T., Liu, Q., Chen, B., Tam, V.W.Y.: Micro-characterizations and geopolymerization mechanism of ternary cementless composite with reactive ultra-fine fly ash, red mud and recycled powder. Constr. Build. Mater. 343, 128091 (2022)

    Article  Google Scholar 

  36. He, J., Zhang, J., Yu, Y., Zhang, G.: The strength and microstructure of two geopolymers derived from metakaolin and red mud-fly ash admixture: a comparative study. Constr. Build. Mater. 30, 80–91 (2012)

    Article  Google Scholar 

  37. Ke, X., Bernal, S.A., Ye, N., Provis, J.L., Yang, J.: One-part geopolymers based on thermally treated red Mud/NaOH blends. J. Am. Ceram. Soc. 98, 5–11 (2015)

    Article  Google Scholar 

  38. Singh, S., Aswath, M.U., Ranganath, R.V.: Effect of mechanical activation of red mud on the strength of geopolymer binder. Constr. Build. Mater. 177, 91–101 (2018)

    Article  Google Scholar 

  39. Kumar, S., Kumar, A.: Development of paving blocks from synergistic use of red mud and fly ash using geopolymerization. Constr. Build. Mater. 38, 865–871 (2013)

    Article  Google Scholar 

  40. Azad, N.M., Samindi, S.M., Samarakoon, M.K.: Utilization of industrial by-products/waste to manufacture geopolymer cement/concrete. Sustainability 13(2), 873 (2021)

    Article  Google Scholar 

  41. Bai, Y., Guo, W., Wang, X., Pan, H., Zhao, Q., Wang, D.: Utilization of municipal solid waste incineration fly ash with red mud-carbide slag for eco-friendly geopolymer preparation. J. Cleaner Prod. 340, 130820 (2022)

    Article  Google Scholar 

  42. Ge, X., Xiang, H., Shi, C.: Mechanical properties and microstructure of circulating fluidized bed fly ash and red mud-based geopolymer. Constr. Build. Mater. 340, 127599 (2022)

    Article  Google Scholar 

  43. Direct Industry Homepage. https://www.directindustry.it/. Last accessed 13 Mar 2023

  44. Aitec Homepage. https://www.aitecweb.com/. Last accessed 13 Mar 2023

  45. Alt, C.: Solid-liquid Separation, Introduction Ullmann’s Encyclopedia of IndustrialChemistry. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany (2000)

    Google Scholar 

  46. International Organization for Standardization (ISO). ISO 14040: EnvironmentalManagement Life Cycle Assessment – Principles and Framework. Switzerland, European Standard, Geneva, (2006)

    Google Scholar 

  47. Simapro Homepage. https://simapro.com/. Last accessed 13 Jun 2023

  48. Qaidi, Shaker M.A.., Tayeh, Bassam A., Ahmed, Hemn Unis, Emad, Wael: A review of the sustainable utilisation of red mud and fly ash for the production of geopolymer composites. Construction Build. Mater. 350, 128892 (2022)

    Article  Google Scholar 

  49. Tsakiridis, P.E., Agatzini-Leonardou, S., Oustadakis, P.: Red mud addition in the raw meal for the production of Portland cement clinker. J. Hazard. Mater. 116, 1–2 (2004)

    Article  Google Scholar 

Download references

Acknowledgements

This study was carried out within the MICS (Made in Italy – Circular and Sustainable) Extended Partnership and received funding from the European Union Next-GenerationEU (PIANO NAZIONALE DI RIPRESA E RESILIENZA (PNRR) – MISSIONE 4 COMPONENTE 2, INVESTIMENTO 1.3 – D.D. 1551.11-10-2022, PE00000004). This manuscript reflects only the authors’ views and opinions, neither the European Union nor the European Commission can be considered responsible for them.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luca Adelfio .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 IFIP International Federation for Information Processing

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Adelfio, L., Sgarbossa, F., Leone, R., La Scalia, G. (2023). Life Cycle Assessment of Red Mud-Based Geopolymer Production at Industrial Scale. In: Alfnes, E., Romsdal, A., Strandhagen, J.O., von Cieminski, G., Romero, D. (eds) Advances in Production Management Systems. Production Management Systems for Responsible Manufacturing, Service, and Logistics Futures. APMS 2023. IFIP Advances in Information and Communication Technology, vol 692. Springer, Cham. https://doi.org/10.1007/978-3-031-43688-8_41

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-43688-8_41

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-43687-1

  • Online ISBN: 978-3-031-43688-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics